Open iamgyang opened 3 years ago
The All_Indicators
indicator in database_id FM
doesn't seem to have any data behind it, even though the API returns it in the list of available indicators... but all the other indicators seem to work as expected...
Side note:
If you specify country = "all"
(or do not specify country
, because "all"
is the default) in the imf_data()
function, imf_data()
will automatically fill in all valid 2 letter iso2c codes it knows, i.e. imfr::all_iso2c$iso2c
. If you specify country = ""
, it will not include any country/region specification in the API call, and hence return all values regardless of the country/region they are specified as, which is useful if you want to include region codes that are not valid iso2c codes, e.g. "1C_035"
.
library(imfr)
library(tidyverse)
imf_codes(codelist = "CL_INDICATOR_FM")$codes
#> [1] "GGCB_G01_PGDP_PT" "GGCBP_G01_PGDP_PT" "G_X_G01_GDP_PT"
#> [4] "G_XWDG_G01_GDP_PT" "GGXWDN_G01_GDP_PT" "GGXCNL_G01_GDP_PT"
#> [7] "GGXONLB_G01_GDP_PT" "GGR_G01_GDP_PT" "All_Indicators"
INDICATOR_codes <- imf_codes(codelist = "CL_INDICATOR_FM")
codes <- setdiff(INDICATOR_codes$codes, "All_Indicators")
setNames(map(codes, ~ as_tibble(
imf_data(
database_id = "FM",
indicator = .x,
country = "",
start = 2010
)
)),
codes)
#> $GGCB_G01_PGDP_PT
#> # A tibble: 1,277 × 3
#> iso2c year GGCB_G01_PGDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 -0.444
#> 2 1C_035 2011 -0.320
#> 3 1C_035 2012 -0.313
#> 4 1C_035 2013 -0.372
#> 5 1C_035 2014 -0.398
#> 6 1C_035 2015 -0.604
#> 7 1C_035 2016 -0.660
#> 8 1C_035 2017 -0.642
#> 9 1C_035 2018 -0.685
#> 10 1C_035 2019 -0.827
#> # … with 1,267 more rows
#>
#> $GGCBP_G01_PGDP_PT
#> # A tibble: 1,251 × 3
#> iso2c year GGCBP_G01_PGDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 -0.167
#> 2 1C_035 2011 -0.0354
#> 3 1C_035 2012 -0.0515
#> 4 1C_035 2013 -0.108
#> 5 1C_035 2014 -0.132
#> 6 1C_035 2015 -0.295
#> 7 1C_035 2016 -0.345
#> 8 1C_035 2017 -0.305
#> 9 1C_035 2018 -0.344
#> 10 1C_035 2019 -0.488
#> # … with 1,241 more rows
#>
#> $G_X_G01_GDP_PT
#> # A tibble: 2,724 × 3
#> iso2c year G_X_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 29.9
#> 2 1C_035 2011 29.9
#> 3 1C_035 2012 30.4
#> 4 1C_035 2013 30.6
#> 5 1C_035 2014 30.9
#> 6 1C_035 2015 31.5
#> 7 1C_035 2016 31.4
#> 8 1C_035 2017 30.8
#> 9 1C_035 2018 31.2
#> 10 1C_035 2019 31.7
#> # … with 2,714 more rows
#>
#> $G_XWDG_G01_GDP_PT
#> # A tibble: 2,703 × 3
#> iso2c year G_XWDG_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 38.1
#> 2 1C_035 2011 37.2
#> 3 1C_035 2012 37.1
#> 4 1C_035 2013 38.3
#> 5 1C_035 2014 40.4
#> 6 1C_035 2015 43.9
#> 7 1C_035 2016 48.4
#> 8 1C_035 2017 50.5
#> 9 1C_035 2018 52.4
#> 10 1C_035 2019 54.7
#> # … with 2,693 more rows
#>
#> $GGXWDN_G01_GDP_PT
#> # A tibble: 1,335 × 3
#> iso2c year GGXWDN_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 26.2
#> 2 1C_035 2011 24.4
#> 3 1C_035 2012 23.0
#> 4 1C_035 2013 23.2
#> 5 1C_035 2014 24.7
#> 6 1C_035 2015 29.1
#> 7 1C_035 2016 34.7
#> 8 1C_035 2017 35.8
#> 9 1C_035 2018 36.7
#> 10 1C_035 2019 38.4
#> # … with 1,325 more rows
#>
#> $GGXCNL_G01_GDP_PT
#> # A tibble: 2,724 × 3
#> iso2c year GGXCNL_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 -2.36
#> 2 1C_035 2011 -0.962
#> 3 1C_035 2012 -0.952
#> 4 1C_035 2013 -1.58
#> 5 1C_035 2014 -2.48
#> 6 1C_035 2015 -4.30
#> 7 1C_035 2016 -4.78
#> 8 1C_035 2017 -4.08
#> 9 1C_035 2018 -3.71
#> 10 1C_035 2019 -4.68
#> # … with 2,714 more rows
#>
#> $GGXONLB_G01_GDP_PT
#> # A tibble: 2,630 × 3
#> iso2c year GGXONLB_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 -0.630
#> 2 1C_035 2011 0.749
#> 3 1C_035 2012 0.602
#> 4 1C_035 2013 -0.0212
#> 5 1C_035 2014 -0.866
#> 6 1C_035 2015 -2.57
#> 7 1C_035 2016 -3.07
#> 8 1C_035 2017 -2.29
#> 9 1C_035 2018 -1.94
#> 10 1C_035 2019 -2.89
#> # … with 2,620 more rows
#>
#> $GGR_G01_GDP_PT
#> # A tibble: 2,733 × 3
#> iso2c year GGR_G01_GDP_PT
#> <chr> <chr> <dbl>
#> 1 1C_035 2010 27.5
#> 2 1C_035 2011 28.9
#> 3 1C_035 2012 29.4
#> 4 1C_035 2013 29.0
#> 5 1C_035 2014 28.4
#> 6 1C_035 2015 27.2
#> 7 1C_035 2016 26.6
#> 8 1C_035 2017 26.7
#> 9 1C_035 2018 27.5
#> 10 1C_035 2019 27.0
#> # … with 2,723 more rows
imf_data(
database_id = "FM",
indicator = "All_Indicators",
country = "",
start = 2010
)
#> Error: No data found.
Created on 2022-02-20 by the reprex package (v2.0.1)
Hi, I was recently using this package to pull the FM dataset.
The output is no longer a nested list with a dataframe, but rather a list with URLs in it. Could you let me know if I'm doing something wrong, or is this a known issue with the Fiscal Monitor data?
Thanks so much for your time and for creating this package!