## Copy the code below to generate a reproducible example
## using the reprex package. Once you generate it, post it on
## https://github.com/uc-cfss/reproducible-examples-and-git/issues/2
library(tidyverse)
# get data from rcfss package
# install latest version if not already installed
# devtools::install_github("uc-cfss/rcfss")
library(rcfss)
# load the data
data("mass_shootings")
mass_shootings
#> # A tibble: 114 × 14
#> case year month day location summary fatalities injured total_victims
#> <chr> <dbl> <chr> <int> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Dayton… 2019 Aug 4 Dayton,… "PENDING" 9 27 36
#> 2 El Pas… 2019 Aug 3 El Paso… "PENDING" 20 26 46
#> 3 Gilroy… 2019 Jul 28 Gilroy,… "Santino… 3 12 15
#> 4 Virgin… 2019 May 31 Virgini… "DeWayne… 12 4 16
#> 5 Harry … 2019 Feb 15 Aurora,… "Gary Ma… 5 6 11
#> 6 Pennsy… 2019 Jan 24 State C… "Jordan … 3 1 4
#> 7 SunTru… 2019 Jan 23 Sebring… "Zephen … 5 0 5
#> 8 Mercy … 2018 Nov 19 Chicago… "Juan Lo… 3 0 3
#> 9 Thousa… 2018 Nov 7 Thousan… "Ian Dav… 12 22 34
#> 10 Tree o… 2018 Oct 27 Pittsbu… "Robert … 11 6 17
#> # … with 104 more rows, and 5 more variables: location_type <chr>, male <lgl>,
#> # age_of_shooter <dbl>, race <chr>, prior_mental_illness <chr>
# Generate a bar chart that identifies the number of mass shooters
# associated with each race category. The bars should be sorted
# from highest to lowest.
# using forcats::fct_infreq() and using the raw data for plotting
mass_shootings %>%
drop_na(race) %>%
ggplot(mapping = aes(x = fct_infreq(race))) +
geom_bar() +
coord_flip() +
labs(
title = "Mass shootings in the United States (1982-2019)",
x = "Race of perpetrator",
y = "Number of incidents"
)
Created on 2021-11-04 by the reprex package (v2.0.1)