dataset_root: Z:\HY\results\Training dataset: Train
sub-directory: /Train num samples: 400
num total samples of Train: 400 x 1.0 (total_data_usage_ratio) = 400
num samples of Train per batch: 192 x 1.0 (batch_ratio) = 192
Total_batch_size: 192 = 192
dataset_root: Z:\HY\results\Validation dataset: /
Traceback (most recent call last):
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\train.py", line 317, in
train(opt)
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\train.py", line 35, in train
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\dataset.py", line 118, in hierarchical_dataset
dataset = LmdbDataset(dirpath, opt)
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\dataset.py", line 135, in init
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
lmdb.Error: Z:\HY\results\Validation/Validation: The paging file is too small for this operation to complete.
Hi. I wanna train the model using my own dataset. My train set has 400 samples and validation set has 100 samples. Below are the command and output.
Command
python .\train.py --valid_data Z:\HY\results\Validation --train_data Z:\HY\results\Training --select_data Train --batch_ratio 1 --Transformation None --FeatureExtract VGG --SequenceModeling BiLSTM --Prediction CTC --data_filtering_off --sensitive --workers 0 --workers 0 is used to solve TypeError: can't pickle "Environment' objects https://github.com/clovaai/deep-text-recognition-benchmark/issues/17 , https://github.com/clovaai/deep-text-recognition-benchmark/issues/321
Output
dataset_root: Z:\HY\results\Training opt.select_data: ['Train'] opt.batch_ratio: ['1']
dataset_root: Z:\HY\results\Training dataset: Train sub-directory: /Train num samples: 400 num total samples of Train: 400 x 1.0 (total_data_usage_ratio) = 400 num samples of Train per batch: 192 x 1.0 (batch_ratio) = 192
Total_batch_size: 192 = 192
dataset_root: Z:\HY\results\Validation dataset: / Traceback (most recent call last): File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\train.py", line 317, in
train(opt)
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\train.py", line 35, in train
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\dataset.py", line 118, in hierarchical_dataset
dataset = LmdbDataset(dirpath, opt) File "C:\Users\HY\Desktop\New folder\New folder\deep-text-recognition-benchmark\dataset.py", line 135, in init self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) lmdb.Error: Z:\HY\results\Validation/Validation: The paging file is too small for this operation to complete.