Open mbod opened 4 years ago
sys.path.append('/data00/tools/cnlab_pipeline/')
from cnlab.GLM import first_level
MODEL_SPEC_FILE = 'muri_model_cuereact_alcohol-reactivity_RF.json' # replace with filename of JSON file
MODEL_PATH = os.path.abspath(
os.path.join('../model_specifications',
MODEL_SPEC_FILE)
)
include_subjects = ['sub-MURIP041', 'sub-MURIP067', 'sub-MURIP115', 'sub-MURIP393', 'sub-MURIP549']
model_def=first_level.setup_pipeline(MODEL_PATH,
include_subjects=include_subjects,
DEBUG=True)
model_def
dictionary:{
"ProjectID": "MURI",
"TR": 1.0,
"BaseDirectory": "/data00/projects",
"ModelName": "alcohol_reactivity",
"TaskName": "cuereact",
"LongName": "model with event regressors",
"Conditions": {
"cue": [
"cue_nonalc_react",
"cue_alc_react",
"cue_alc_mindful",
"cue_alc_friend1",
"cue_alc_friend2",
"cue_alc_friend3",
"cue_alc_friend4"
],
"nonalc_react": [
"pic_nonalc_react"
],
"alc_react": [
"pic_alc_react"
],
"downreg": [
"pic_alc_mindful",
"pic_alc_friend3",
"pic_alc_friend4"
],
"upreg": [
"pic_alc_friend1",
"pic_alc_friend2"
],
"rating": [
"rating_nonalc_react",
"rating_alc_react",
"rating_alc_mindful",
"rating_alc_friend1",
"rating_alc_friend2",
"rating_alc_friend3",
"rating_alc_friend4"
]
},
"Contrasts": [
{
"name": "alc_v_nonalc",
"pos": [
"alc_react"
],
"neg": [
"nonalc_react"
]
},
{
"name": "upreg_v_downreg",
"pos": [
"upreg"
],
"neg": [
"downreg"
]
},
{
"name": "downreg_v_alc_react",
"pos": [
"downreg"
],
"neg": [
"alc_react"
]
},
{
"name": "upreg_v_alc_react",
"pos": [
"upreg"
],
"neg": [
"alc_react"
]
}
],
"Runs": [
"1",
"2",
"3",
"4"
],
"subject_list": [
"sub-MURIP041",
"sub-MURIP067",
"sub-MURIP115",
"sub-MURIP393",
"sub-MURIP549"
],
"output_dir": "/data00/projects/MURI/derivatives/nipype/model_CUEREACT_alcohol_reactivity",
"working_dir": "/data00/projects/MURI/working/nipype/workingdir_model_CUEREACT_alcohol_reactivity",
"model_path": "/fmriNASTest/data00/projects/MURI/scripts/jupyterhub_users/CNLab/first_level_models/model_specifications/muri_model_cuereact_alcohol-reactivity_RF.json",
"SUBJ_DIR": "/data00/projects/MURI/data/BIDS/derivatives/fmriprep",
"PROJECT_DIR": "/data00/projects/MURI",
"generate_residuals": true,
"unzip_and_smooth": true
}
pipeline=first_level.build_pipeline(model_def)
This looks reasonable for what I think we had for the MURI processing and includes unzip and smooth and the residuals which were options added into the model spec.
The first pass refactor of
first_level.py
09adcff works with the megameta project data where the data were preprocessed to be resampled and smoothed and as.nii
not.nii.gz
files.Created
muri
branch - https://github.com/cnlab/cnlab_pipeline/tree/muriThis is currently checked out in
/data00/tools/cnlab_pipeline
where I've been working on getting changes in to make a MURI first level work.The JSON file for the model is:
/data00/projects/MURI/scripts/jupyterhub_users/CNLab/first_level_models/model_specifications/muri_model_cuereact_alcohol-reactivity_RF.json
/data00/projects/MURI/scripts/jupyterhub_users/CNLab/first_level_models/cuereact_alcohol-reactivity/muri_model_cuereact_alcohol-reactivity_REFACTORED.ipynb