in the function sellFractions() there is no validation that there is enough ETH in the vault to exchange for fractional tokens for the _amount that is being transferred from msg.sender
if there is not enough ETH in the vault an underflow will occur when decreasing ethBalance
if the sender is a contract that cannot handle ETH the funds can be stuck, recommend adding a parameter to give the option for the user to withdraw to another address
Use of Block.timestamp
description
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers (see the Entropy Illusion for further details), locking funds for periods of time, and various state-changing conditional statements that are time-dependent. Miners have the ability to adjust timestamps slightly, which can prove to be dangerous if block timestamps are used incorrectly in smart contracts.
recommendation
Block timestamps should not be used for entropy or generating random numbers—i.e., they should not be the deciding factor (either directly or through some derivation) for winning a game or changing an important state.
Time-sensitive logic is sometimes required; e.g., for unlocking contracts (time-locking), completing an ICO after a few weeks, or enforcing expiry dates. It is sometimes recommended to use block.number and an average block time to estimate times; with a 10 second block time, 1 week equates to approximately, 60480 blocks. Thus, specifying a block number at which to change a contract state can be more secure, as miners are unable to easily manipulate the block number.
Checking addresses against zero-address during initialization or during setting is a security best-practice. However, such checks are missing in address variable initializations/changes in many places.
Impact: Allowing zero-addresses will lead to contract reverts and force redeployments if there are no setters for such address variables.
no validation of ethAmount
description
in the function
sellFractions()
there is no validation that there is enough ETH in the vault to exchange for fractional tokens for the _amount that is being transferred from msg.senderif there is not enough ETH in the vault an underflow will occur when decreasing ethBalance
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L139
cannot withdraw to another address
description
in the function
leave()
ETH is transferred to msg.senderhttps://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L172
if the sender is a contract that cannot handle ETH the funds can be stuck, recommend adding a parameter to give the option for the user to withdraw to another address
Use of Block.timestamp
description
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers (see the Entropy Illusion for further details), locking funds for periods of time, and various state-changing conditional statements that are time-dependent. Miners have the ability to adjust timestamps slightly, which can prove to be dangerous if block timestamps are used incorrectly in smart contracts.
recommendation
Block timestamps should not be used for entropy or generating random numbers—i.e., they should not be the deciding factor (either directly or through some derivation) for winning a game or changing an important state.
Time-sensitive logic is sometimes required; e.g., for unlocking contracts (time-locking), completing an ICO after a few weeks, or enforcing expiry dates. It is sometimes recommended to use block.number and an average block time to estimate times; with a 10 second block time, 1 week equates to approximately, 60480 blocks. Thus, specifying a block number at which to change a contract state can be more secure, as miners are unable to easily manipulate the block number.
findings
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/FERC1155.sol#L108 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/FERC1155.sol#L154 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L125 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L162 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L203 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L194
missing checks for zero address
description
Checking addresses against zero-address during initialization or during setting is a security best-practice. However, such checks are missing in address variable initializations/changes in many places.
Impact: Allowing zero-addresses will lead to contract reverts and force redeployments if there are no setters for such address variables.
findings
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/FERC1155.sol#L209 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/FERC1155.sol#L222 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L47-L49 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L53-L60 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Minter.sol#L18 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/protoforms/BaseVault.sol#L25 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/references/SupplyReference.sol#L16 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/targets/Supply.sol#L17 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/utils/Metadata.sol#L17
use of magic numbers
description
constants should be declared rather than use magic numbers
findings
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/FERC1155.sol#L247 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L86-L87 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L209-L211 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L452 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L199
Unused receive() function
description
If the intention is for the Ether to be used, the function should call another function, otherwise it should revert
findings
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/Vault.sol#L32 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Buyout.sol#L53 https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/modules/Migration.sol#L63
array length validation
description
in
install()
there is no validation that the two arrays passed in as function parameters have the same lengththis could cause
methods
not to be updated or the function call to failemit could also emit the wrong information
findings
https://github.com/code-423n4/2022-07-fractional/blob/e2c5a962a94106f9495eb96769d7f60f7d5b14c9/src/Vault.sol#L77