The code can be optimized by minimizing the number of SLOADs.
SLOADs are expensive (100 gas after the 1st one) compared to MLOADs/MSTOREs (3 gas each). Storage values read multiple times should instead be cached in memory the first time (costing 1 SLOAD) and then read from this cache to avoid multiple SLOADs.
NB: Some functions have been truncated where neccessary to just show affected parts of the code
Help the Optimizer by saving a storage variable's reference instead of repeatedly fetching it
Caching a mapping's value in a local storage or calldata variable when the value is accessed multiple times saves ~42 gas per access due to not having to perform the same offset calculation every time.
To help the optimizer,declare a storage type variable and use it instead of repeatedly fetching the reference in a map or an array.
As an example, instead of repeatedly calling someMap[someIndex], save its reference like this: SomeStruct storage someStruct = someMap[someIndex] and use it.
Token.sol._isForFounder(): tokenRecipient[baseTokenId] should be cached
File: /src/token/Token.sol
177: function _isForFounder(uint256 _tokenId) private returns (bool) {
181: // If there is no scheduled recipient:
182: if (tokenRecipient[baseTokenId].wallet == address(0)) {
183: return false;
185: // Else if the founder is still vesting:
186: } else if (block.timestamp < tokenRecipient[baseTokenId].vestExpiry) {
187: // Mint the token to the founder
188: _mint(tokenRecipient[baseTokenId].wallet, _tokenId);
190: return true;
199: }
Using calldata instead of memory for read-only arguments in external functions saves gas(See audit tags in the code)
When a function with a memory array is called externally, the abi.decode() step has to use a for-loop to copy each index of the calldata to the memory index. Each iteration of this for-loop costs at least 60 gas (i.e. 60 * .length). Using calldata directly, obliviates the need for such a loop in the contract code and runtime execution. Note that even if an interface defines a function as having memory arguments, it's still valid for implementation contracs to use calldata arguments instead.
If the array is passed to an internal function which passes the array to another internal function where the array is modified and therefore memory is used in the external call, it's still more gass-efficient to use calldata when the external function uses modifiers, since the modifiers may prevent the internal functions from being called. Structs have the same overhead as an array of length one
Note that I've also flagged instances where the function is public but can be marked as external since it's not called by the contract, and cases where a constructor is involved
File: /src/lib/proxy/UUPS.sol
//@audit: use calldata for _data
55: function upgradeToAndCall(address _newImpl, bytes memory _data) external payable onlyProxy {
56: _authorizeUpgrade(_newImpl);
57: _upgradeToAndCallUUPS(_newImpl, _data, true);
58: }
Multiple address mappings can be combined into a single mapping of an address to a struct, where appropriate
Saves a storage slot for the mapping. Depending on the circumstances and sizes of types, can avoid a Gsset (20000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both values and they both fit in the same storage slot. Finally, if both fields are accessed in the same function, can save ~42 gas per access due to not having to recalculate the key's keccak256 hash (Gkeccak256 - 30 gas) and that calculation's associated stack operations.
Using storage instead of memory for structs/arrays saves gas
When fetching data from a storage location, assigning the data to a memory variable causes all fields of the struct/array to be read from storage, which incurs a Gcoldsload (2100 gas) for each field of the struct/array. If the fields are read from the new memory variable, they incur an additional MLOAD rather than a cheap stack read. Instead of declearing the variable with the memory keyword, declaring the variable with the storage keyword and caching any fields that need to be re-read in stack variables, will be much cheaper, only incuring the Gcoldsload for the fields actually read. The only time it makes sense to read the whole struct/array into a memory variable, is if the full struct/array is being returned by the function, is being passed to a function that requires memory, or if the array/struct is being read from another memory array/struct
Use Shift Right/Left instead of Division/Multiplication
While the DIV / MUL opcode uses 5 gas, the SHR / SHL opcode only uses 3 gas. Furthermore, beware that Solidity's division operation also includes a division-by-0 prevention which is bypassed using shifting. Eventually, overflow checks are never performed for shift operations as they are done for arithmetic operations. Instead, the result is always truncated, so the calculation can be unchecked in Solidity version 0.8+
Usage of uints/ints smaller than 32 bytes (256 bits) incurs overhead
When using elements that are smaller than 32 bytes, your contract’s gas usage may be higher. This is because the EVM operates on 32 bytes at a time. Therefore, if the element is smaller than that, the EVM must use more operations in order to reduce the size of the element from 32 bytes to the desired size.
Expressions for constant values such as a call to keccak256(), should use immutable rather than constant
Due to how constant variables are implemented (replacements at compile-time), an expression assigned to a constant variable is recomputed each time that the variable is used, which wastes some gas.
If the variable was immutable instead: the calculation would only be done once at deploy time (in the constructor), and then the result would be saved and read directly at runtime rather than being recalculated.
consequences:
Each usage of a "constant" costs ~100gas more on each access (it is still a little better than storing the result in storage, but not much..)
Since these are not real constants, they can't be referenced from a real constant environment (e.g. from assembly, or from another library )
Running 1 test for test/Constant.t.sol:ConstantTest
[PASS] testdoThing() (gas: 5416)
Test result: ok. 1 passed; 0 failed; finished in 420.08µs
Running 1 test for test/Immutable.t.sol:ImmutableTest
[PASS] testdoThing() (gas: 5356)
Test result: ok. 1 passed; 0 failed; finished in 389.91µs
Using bools for storage incurs overhead
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
See source
Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to avoid Gsset (20000 gas) when changing from ‘false’ to ‘true’, after having been ‘true’ in the past
Using private rather than public for constants, saves gas
If needed, the value can be read from the verified contract source code. Savings are due to the compiler not having to create non-payable getter functions for deployment calldata, and not adding another entry to the method ID table.
FINDINGS
Cache storage values in memory to minimize SLOADs
The code can be optimized by minimizing the number of SLOADs.
SLOADs are expensive (100 gas after the 1st one) compared to MLOADs/MSTOREs (3 gas each). Storage values read multiple times should instead be cached in memory the first time (costing 1 SLOAD) and then read from this cache to avoid multiple SLOADs.
NB: Some functions have been truncated where neccessary to just show affected parts of the code
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/utils/Initializable.sol#L33-L51
Initializable.sol.initializer(): _initialized should be cached
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/auction/Auction.sol#L172
The result of a function call should be cached rather than re-calling the function
External calls are expensive. Consider caching the following:
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L116-L129
Governor.sol.propose(): proposalThreshold() being called twice despite having a cached value(saves ~1333 gas)
Internal/Private functions only called once can be inlined to save gas
Not inlining costs 20 to 40 gas because of two extra JUMP instructions and additional stack operations needed for function calls.
Affected code: https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L250-L252
The above is only called once on Line 176
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L255-L262
The above is only called on Line 244
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/Token.sol#L71
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/Token.sol#L130
The above is only used on Line 110
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/Token.sol#L177
The above is only used on Line 157
Help the Optimizer by saving a storage variable's reference instead of repeatedly fetching it
Caching a mapping's value in a local storage or calldata variable when the value is accessed multiple times saves ~42 gas per access due to not having to perform the same offset calculation every time. To help the optimizer,declare a storage type variable and use it instead of repeatedly fetching the reference in a map or an array. As an example, instead of repeatedly calling
someMap[someIndex]
, save its reference like this:SomeStruct storage someStruct = someMap[someIndex]
and use it.https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/Token.sol#L177-L199
Token.sol._isForFounder(): tokenRecipient[baseTokenId] should be cached
Using calldata instead of memory for read-only arguments in external functions saves gas(See audit tags in the code)
When a function with a memory array is called externally, the abi.decode() step has to use a for-loop to copy each index of the calldata to the memory index. Each iteration of this for-loop costs at least 60 gas (i.e. 60 *.length). Using calldata directly, obliviates the need for such a loop in the contract code and runtime execution. Note that even if an interface defines a function as having memory arguments, it's still valid for implementation contracs to use calldata arguments instead.
If the array is passed to an internal function which passes the array to another internal function where the array is modified and therefore memory is used in the external call, it's still more gass-efficient to use calldata when the external function uses modifiers, since the modifiers may prevent the internal functions from being called. Structs have the same overhead as an array of length one
Note that I've also flagged instances where the function is public but can be marked as external since it's not called by the contract, and cases where a constructor is involved
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L116-L121
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L192-L198
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L324-L329
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/treasury/Treasury.sol#L101-L108
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/treasury/Treasury.sol#L141-L146
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L347-L351
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L355-L359
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L363-L367
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/proxy/UUPS.sol#L55-L58
Multiple address mappings can be combined into a single mapping of an address to a struct, where appropriate
Saves a storage slot for the mapping. Depending on the circumstances and sizes of types, can avoid a Gsset (20000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both values and they both fit in the same storage slot. Finally, if both fields are accessed in the same function, can save ~42 gas per access due to not having to recalculate the key's keccak256 hash (Gkeccak256 - 30 gas) and that calculation's associated stack operations.
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/storage/TokenStorageV1.sol#L15-L19
Using storage instead of memory for structs/arrays saves gas
When fetching data from a storage location, assigning the data to a memory variable causes all fields of the struct/array to be read from storage, which incurs a Gcoldsload (2100 gas) for each field of the struct/array. If the fields are read from the new memory variable, they incur an additional MLOAD rather than a cheap stack read. Instead of declearing the variable with the memory keyword, declaring the variable with the storage keyword and caching any fields that need to be re-read in stack variables, will be much cheaper, only incuring the Gcoldsload for the fields actually read. The only time it makes sense to read the whole struct/array into a memory variable, is if the full struct/array is being returned by the function, is being passed to a function that requires memory, or if the array/struct is being read from another memory array/struct
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/auction/Auction.sol#L92
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L358
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L415
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/auction/Auction.sol#L169
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L216
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L234
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/token/metadata/MetadataRenderer.sol#L240
Use Shift Right/Left instead of Division/Multiplication
While the DIV / MUL opcode uses 5 gas, the SHR / SHL opcode only uses 3 gas. Furthermore, beware that Solidity's division operation also includes a division-by-0 prevention which is bypassed using shifting. Eventually, overflow checks are never performed for shift operations as they are done for arithmetic operations. Instead, the result is always truncated, so the calculation can be unchecked in Solidity version 0.8+
relevant source
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/token/ERC721Votes.sol#L95
Usage of uints/ints smaller than 32 bytes (256 bits) incurs overhead
When using elements that are smaller than 32 bytes, your contract’s gas usage may be higher. This is because the EVM operates on 32 bytes at a time. Therefore, if the element is smaller than that, the EVM must use more operations in order to reduce the size of the element from 32 bytes to the desired size.
https://docs.soliditylang.org/en/v0.8.11/internals/layout_in_storage.html Use a larger size then downcast where needed
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L208-L216
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/token/ERC721Votes.sol#L144-L151
Expressions for constant values such as a call to keccak256(), should use immutable rather than constant
Due to how constant variables are implemented (replacements at compile-time), an expression assigned to a constant variable is recomputed each time that the variable is used, which wastes some gas.
If the variable was immutable instead: the calculation would only be done once at deploy time (in the constructor), and then the result would be saved and read directly at runtime rather than being recalculated.
consequences:
Each usage of a "constant" costs ~100gas more on each access (it is still a little better than storing the result in storage, but not much..)
Since these are not real constants, they can't be referenced from a real constant environment (e.g. from assembly, or from another library )
See: ethereum/solidity#9232
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L27
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/utils/EIP712.sol#L19
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/token/ERC721Votes.sol#L21
Proof: can be tested on remix also, showing results for foundry
Results from :
forge test --gas-report --optimize
Using bools for storage incurs overhead
See source Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to avoid Gsset (20000 gas) when changing from ‘false’ to ‘true’, after having been ‘true’ in the past
Instances affected include
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/storage/GovernorStorageV1.sol#L19
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/manager/storage/ManagerStorageV1.sol#L10
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/utils/Initializable.sol#L20
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/utils/Pausable.sol#L15
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/lib/token/ERC721.sol#L38
Using private rather than public for constants, saves gas
If needed, the value can be read from the verified contract source code. Savings are due to the compiler not having to create non-payable getter functions for deployment calldata, and not adding another entry to the method ID table.
https://github.com/code-423n4/2022-09-nouns-builder/blob/7e9fddbbacdd7d7812e912a369cfd862ee67dc03/src/governance/governor/Governor.sol#L27