compneuro-julia / compneuro-julia-management

https://compneuro-julia.github.io/
23 stars 2 forks source link

ToDo #1

Open takyamamoto opened 4 years ago

takyamamoto commented 4 years ago

I have a lot to do to improve the website.

takyamamoto commented 4 years ago

書く内容について

takyamamoto commented 4 years ago

神経回路網の学習則

takyamamoto commented 4 years ago

Energy-based モデル

自己組織化マップと教師なし学習

Reservoir Computing

情報理論と最適化原理

ベイズ脳理論と生成モデル

時空間の符号化

運動学習

強化学習

神経細胞の形態と数理モデル

takyamamoto commented 4 years ago

神経回路網の学習ダイナミクスは神経回路網の数理に置き換えた方が良いか?

takyamamoto commented 4 years ago

神経回路網の構築 (発火率モデル)

神経回路網の構築 (Spikingモデル)

神経回路網の演算処理

takyamamoto commented 4 years ago

FHNモデル、モデルの1つとして取り扱う https://omedstu.jimdofree.com/2018/06/21/fitzhugh-nagumo%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E3%82%A2%E3%83%8B%E3%83%A1%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%A7%E8%A6%8B%E3%82%8B/

神経回路網の非線形ダイナミクス:位相場、カオス、同期

takyamamoto commented 4 years ago

Event-based Simulation of Spiking Neural Networks in Julia https://github.com/RainerEngelken/JuliaCon2017

位相縮約理論で章を作成 位相方程式によるSNNのシミュレーション

takyamamoto commented 4 years ago
  1. HH, FHN https://en.wikipedia.org/wiki/FitzHugh%E2%80%93Nagumo_model Morris–Lecar modelも取り扱うか? ML model https://en.wikipedia.org/wiki/Morris%E2%80%93Lecar_model https://www.frontiersin.org/articles/10.3389/fnins.2017.00123/full https://ieeexplore.ieee.org/document/7966284
  2. LIF, QIF https://www.maths.nottingham.ac.uk/plp/pmzsc/neurodynamics/NonlinearIF.pdf
  3. Iz モデル
  4. Multicomp
  5. 発火率
  6. stochastic
  7. ISI

↓に行くほど抽象度が高くなるようにする。

https://en.wikipedia.org/wiki/Biological_neuron_model

takyamamoto commented 4 years ago

教師なし学習は 競合学習(Competitive Learning) https://www.frontiersin.org/articles/10.3389/fncom.2015.00099/full

takyamamoto commented 4 years ago

PCAとHebbian

https://twitter.com/samuel_eckmann/status/1285280776007933957?s=20

takyamamoto commented 4 years ago

https://github.com/RainerEngelken/neurotheory-seminar-2019

takyamamoto commented 4 years ago

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638500/

takyamamoto commented 4 years ago

nonsynaptic plasticityも書く https://en.wikipedia.org/wiki/Nonsynaptic_plasticity

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits https://www.biorxiv.org/content/10.1101/2020.03.30.015511v1.full

BTDPも書く burst-time dependent plasticity

takyamamoto commented 4 years ago

多重ディスパッチ使おう

takyamamoto commented 4 years ago

Hopfield-model

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/95024/1/KJ00004760583.pdf https://www.pnas.org/content/79/8/2554 https://arxiv.org/abs/1606.01164 https://arxiv.org/abs/1701.00939 https://arxiv.org/abs/2008.02217 https://github.com/takyamamoto/Hopfield-Network

takyamamoto commented 4 years ago

Dayan & Abbott, 2001 Poisson process with Gaussian refractory period ISIはEI balanceに影響 https://mfr.ca-1.osf.io/render?url=https://osf.io/rbx2a/?direct%26mode=render%26action=download%26mode=render

takyamamoto commented 4 years ago

Neural sampling

Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002211

Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability https://arxiv.org/pdf/1807.08952.pdf

Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077700/

Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference https://www.nature.com/articles/s41593-020-0671-1

Knill, D. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).

Perceptual decision-making as probabilistic inference by neural sampling

patio-temporal representations of uncertainty in spiking neural networks https://papers.nips.cc/paper/5343-spatio-temporal-representations-of-uncertainty-in-spiking-neural-networks

sampling-based probabilistic inference

Bayesian Brains without Probabilities https://www.sciencedirect.com/science/article/pii/S1364661316301565

島崎先生の論文 https://arxiv.org/abs/1902.11233 https://arxiv.org/abs/2006.13158

The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005186

takyamamoto commented 4 years ago

Ising model https://www.frontiersin.org/articles/10.3389/fncir.2020.00054/full

takyamamoto commented 4 years ago

Hopfield Networks is All You Need https://ml-jku.github.io/hopfield-layers/

takyamamoto commented 4 years ago

https://motorcontrol.jp/mc13/MC2019_2_OptimalControlStochastic.pdf

takyamamoto commented 4 years ago

CCNBook https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Main

takyamamoto commented 4 years ago

https://github.com/kylerbrown/python-for-neuroscience

takyamamoto commented 4 years ago

https://alleninstitute.org/what-we-do/brain-science/events-training/summer-workshop-dynamic-brain/swdb-datasets/

takyamamoto commented 4 years ago

https://arxiv.org/abs/2009.01791

takyamamoto commented 4 years ago

Information Theory is abused in neuroscience https://philpapers.org/rec/NIZITI

takyamamoto commented 4 years ago

Network http://www.mibel.cs.tsukuba.ac.jp/~s-tugawa/jikken/model.pdf http://www.metabolomics.jp/wiki/Aritalab:Lecture/NetworkBiology/Erdos-Renyi_Model

Graph Structure of Neural Networks https://arxiv.org/abs/2007.06559

takyamamoto commented 4 years ago

https://www.cell.com/neuron/fulltext/S0896-6273(20)30651-6

takyamamoto commented 4 years ago

https://www.nature.com/articles/s41593-020-0699-2

takyamamoto commented 4 years ago

Path integrals and SDEs in neuroscience

Part1 : http://benlansdell.github.io/statistics/sdes/

Part2 : http://benlansdell.github.io/statistics/sdesII/

takyamamoto commented 4 years ago

Path Integral Methods for Stochastic Differential Equations https://arxiv.org/abs/1009.5966

Path integration https://en.wikipedia.org/wiki/Path_integration

Line integral

Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding https://www.nature.com/articles/nrn2886

Dynamic representations in networked neural systems https://www.nature.com/articles/s41593-020-0653-3

takyamamoto commented 4 years ago

Third-order nanocircuit elements for neuromorphic engineering https://www.nature.com/articles/s41586-020-2735-5

takyamamoto commented 4 years ago

Artificial Neural Networks for Neuroscientists: A Primer https://www.cell.com/neuron/fulltext/S0896-6273(20)30705-4

takyamamoto commented 4 years ago

①ニューラルネットのパラメータの更新則はランジュバン方程式に従う ⇒ 学習プロセスを確率熱力学の言葉で説明できる https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.010601 ②ベイズ統計と統計力学の形式的類似性を追求する ⇒ 熱容量に対応する「学習容量」を発見した https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.052140

takyamamoto commented 4 years ago

http://www.offconvex.org/2016/11/03/MityaNN1/

takyamamoto commented 3 years ago

Distributional Reinforcement Learning in the Brain https://www.sciencedirect.com/science/article/pii/S0166223620301983

takyamamoto commented 2 years ago

Cx3Dについての補足 https://www.ini.uzh.ch/~amw/seco/cx3d/

takyamamoto commented 2 years ago

http://neuromorpho.org/index.jsp

takyamamoto commented 2 years ago

https://twitter.com/hbouammar/status/1489215674014703618?s=20&t=D-XJmf15Br6Ph4uo9h_uDw

takyamamoto commented 2 years ago

$$ y=x^2 $$

Note This is a note

Check This is a note

Warning This is a warning