Open takyamamoto opened 4 years ago
神経回路網の学習ダイナミクスは神経回路網の数理に置き換えた方が良いか?
FHNモデル、モデルの1つとして取り扱う https://omedstu.jimdofree.com/2018/06/21/fitzhugh-nagumo%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E3%82%A2%E3%83%8B%E3%83%A1%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%A7%E8%A6%8B%E3%82%8B/
神経回路網の非線形ダイナミクス:位相場、カオス、同期
Event-based Simulation of Spiking Neural Networks in Julia https://github.com/RainerEngelken/JuliaCon2017
位相縮約理論で章を作成 位相方程式によるSNNのシミュレーション
↓に行くほど抽象度が高くなるようにする。
教師なし学習は 競合学習(Competitive Learning) https://www.frontiersin.org/articles/10.3389/fncom.2015.00099/full
nonsynaptic plasticityも書く https://en.wikipedia.org/wiki/Nonsynaptic_plasticity
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits https://www.biorxiv.org/content/10.1101/2020.03.30.015511v1.full
BTDPも書く burst-time dependent plasticity
多重ディスパッチ使おう
Dayan & Abbott, 2001 Poisson process with Gaussian refractory period ISIはEI balanceに影響 https://mfr.ca-1.osf.io/render?url=https://osf.io/rbx2a/?direct%26mode=render%26action=download%26mode=render
Neural sampling
Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002211
Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability https://arxiv.org/pdf/1807.08952.pdf
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077700/
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference https://www.nature.com/articles/s41593-020-0671-1
Knill, D. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).
Perceptual decision-making as probabilistic inference by neural sampling
patio-temporal representations of uncertainty in spiking neural networks https://papers.nips.cc/paper/5343-spatio-temporal-representations-of-uncertainty-in-spiking-neural-networks
sampling-based probabilistic inference
Bayesian Brains without Probabilities https://www.sciencedirect.com/science/article/pii/S1364661316301565
島崎先生の論文 https://arxiv.org/abs/1902.11233 https://arxiv.org/abs/2006.13158
The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005186
Hopfield Networks is All You Need https://ml-jku.github.io/hopfield-layers/
Information Theory is abused in neuroscience https://philpapers.org/rec/NIZITI
Network http://www.mibel.cs.tsukuba.ac.jp/~s-tugawa/jikken/model.pdf http://www.metabolomics.jp/wiki/Aritalab:Lecture/NetworkBiology/Erdos-Renyi_Model
Graph Structure of Neural Networks https://arxiv.org/abs/2007.06559
Path integrals and SDEs in neuroscience
Path Integral Methods for Stochastic Differential Equations https://arxiv.org/abs/1009.5966
Path integration https://en.wikipedia.org/wiki/Path_integration
Line integral
Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding https://www.nature.com/articles/nrn2886
Dynamic representations in networked neural systems https://www.nature.com/articles/s41593-020-0653-3
Third-order nanocircuit elements for neuromorphic engineering https://www.nature.com/articles/s41586-020-2735-5
Artificial Neural Networks for Neuroscientists: A Primer https://www.cell.com/neuron/fulltext/S0896-6273(20)30705-4
①ニューラルネットのパラメータの更新則はランジュバン方程式に従う ⇒ 学習プロセスを確率熱力学の言葉で説明できる https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.010601 ②ベイズ統計と統計力学の形式的類似性を追求する ⇒ 熱容量に対応する「学習容量」を発見した https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.052140
Distributional Reinforcement Learning in the Brain https://www.sciencedirect.com/science/article/pii/S0166223620301983
Cx3Dについての補足 https://www.ini.uzh.ch/~amw/seco/cx3d/
$$ y=x^2 $$
Note This is a note
Check This is a note
Warning This is a warning
I have a lot to do to improve the website.