Closed a-torgovitsky closed 4 years ago
I got a quick question when I am updating the print and summary messages for subsample
-- should I also allow multiple phi
input for the procedure? (phi
is the parameter that controls the size of each subsample).
Thanks!
This I don't think is necessary.
The reason is because there are natural and easy-to-gain efficiency savings for both fsst and DKQS (less for DKQS) from looking at all of the tuning parameters together instead of in separate calls. For subsample
that is not the case.
Done for subsample
- I have updated the print
and summary
messages.
The sample output are as follows:
Print:
p-value: 0.43
Summary:
p-value: 0.43
Test statistic: 0.00213
Solver used: gurobi
Norm used: 2
Phi used: 0.66667
Number of cores used: 8
I just updated the print and summary messages for estbounds
and mincriterion
.
Sample output for estbounds
:
Estimated bounds: [0.253, 0.25642]
Estimated bounds: [0.253, 0.25642]
Norm used: 2
Solver: gurobi
Sample output for mincriterion
:
Minimum value: 0
Minimum value: 0
Norm used: 2
Solver: gurobi
Thanks!
Edit: I made a typo in the last comment, where I should have typed estbounds
instead of subsample
here.
Looks good. For subsample summary I would add number of observations in each subsample.
Sure! The updated summary message of subsample test is:
p-value: 0.47
Test statistic: 0.00055
Solver used: gurobi
Norm used: 2
Phi used: 0.66667
Size of each subsample: 99
Number of cores used: 1
Thanks!
I have further fine-tuned the print
and summary
messages for invertci
in order to be consistent with the other testing procedures. The original output messages for invertci
can be found in issue #10.
In the updated version, print
will only show the confidence interval(s) in a "table" format like the other print messages. The summary
command will shows more details. In addition, I have added an argument to the summary
command for invertci
that users can choose which confidence interval(s) that they wish to show because the details of the iterations can potentially be a very long list of outputs.
Below are the sample output for invertci
(assuming that x
is the object that stores the results):
print(x)
:
Significance level Confidence interval
0.05 [0.29375, 0.70625]
0.1 [0.30625, 0.70625]
0.2 [0.33125, 0.68125]
summary(x)
:
Maximum number of iterations: 5
Tolerance level: 0.001
Significance level Confidence interval
0.05 [0.29375, 0.70625]
0.1 [0.30625, 0.70625]
0.2 [0.33125, 0.68125]
Details:
<Confidence interval for significance level = 0.05>
=== Iterations in constructing upper bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.60000 NA 0.60000 0.09000 FALSE
Right end pt. NA 1.00000 1.00000 0.00000 TRUE
1 0.60000 1.00000 0.80000 0.00000 TRUE
2 0.60000 0.80000 0.70000 0.04000 FALSE
3 0.70000 0.80000 0.75000 0.00000 TRUE
4 0.70000 0.75000 0.72500 0.01000 TRUE
5 0.70000 0.72500 0.71250 0.01000 TRUE
Reason for termination: Reached maximum number of iterations
=== Iterations in constructing lower bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.00000 NA 0.00000 0.00000 TRUE
Right end pt. NA 0.40000 0.40000 1.00000 FALSE
1 0.00000 0.40000 0.20000 0.00000 TRUE
2 0.20000 0.40000 0.30000 0.05000 FALSE
3 0.20000 0.30000 0.25000 0.00000 TRUE
4 0.25000 0.30000 0.27500 0.00000 TRUE
5 0.27500 0.30000 0.28750 0.00000 TRUE
Reason for termination: Reached maximum number of iterations
<Confidence interval for significance level = 0.1>
=== Iterations in constructing upper bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.60000 NA 0.60000 0.15000 FALSE
Right end pt. NA 1.00000 1.00000 0.00000 TRUE
1 0.60000 1.00000 0.80000 0.00000 TRUE
2 0.60000 0.80000 0.70000 0.06000 FALSE
3 0.70000 0.80000 0.75000 0.01000 TRUE
4 0.70000 0.75000 0.72500 0.03000 TRUE
5 0.70000 0.72500 0.71250 0.03000 TRUE
Reason for termination: Reached maximum number of iterations
=== Iterations in constructing lower bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.00000 NA 0.00000 0.00000 TRUE
Right end pt. NA 0.40000 0.40000 1.00000 FALSE
1 0.00000 0.40000 0.20000 0.00000 TRUE
2 0.20000 0.40000 0.30000 0.03000 TRUE
3 0.30000 0.40000 0.35000 0.21000 FALSE
4 0.30000 0.35000 0.32500 0.07000 FALSE
5 0.30000 0.32500 0.31250 0.06000 FALSE
Reason for termination: Reached maximum number of iterations
<Confidence interval for significance level = 0.2>
=== Iterations in constructing upper bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.60000 NA 0.60000 0.11000 FALSE
Right end pt. NA 1.00000 1.00000 0.00000 TRUE
1 0.60000 1.00000 0.80000 0.00000 TRUE
2 0.60000 0.80000 0.70000 0.05000 TRUE
3 0.60000 0.70000 0.65000 0.39000 FALSE
4 0.65000 0.70000 0.67500 0.17000 FALSE
5 0.67500 0.70000 0.68750 0.07000 TRUE
Reason for termination: Reached maximum number of iterations
=== Iterations in constructing lower bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.00000 NA 0.00000 0.00000 TRUE
Right end pt. NA 0.40000 0.40000 1.00000 FALSE
1 0.00000 0.40000 0.20000 0.00000 TRUE
2 0.20000 0.40000 0.30000 0.00000 TRUE
3 0.30000 0.40000 0.35000 0.30000 FALSE
4 0.30000 0.35000 0.32500 0.09000 TRUE
5 0.32500 0.35000 0.33750 0.18000 FALSE
Reason for termination: Reached maximum number of iterations
The following command can be used to only print the confidence intervals of some confidence intervals: summary(x, alphas = .05)
Maximum number of iterations: 5
Tolerance level: 0.001
Significance level Confidence interval
0.05 [0.29375, 0.70625]
Details:
<Confidence interval for significance level = 0.05>
=== Iterations in constructing upper bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.60000 NA 0.60000 0.09000 FALSE
Right end pt. NA 1.00000 1.00000 0.00000 TRUE
1 0.60000 1.00000 0.80000 0.00000 TRUE
2 0.60000 0.80000 0.70000 0.04000 FALSE
3 0.70000 0.80000 0.75000 0.00000 TRUE
4 0.70000 0.75000 0.72500 0.01000 TRUE
5 0.70000 0.72500 0.71250 0.01000 TRUE
Reason for termination: Reached maximum number of iterations
=== Iterations in constructing lower bound:
Iteration Lower bound Upper bound Test point p-value Reject?
Left end pt. 0.00000 NA 0.00000 0.00000 TRUE
Right end pt. NA 0.40000 0.40000 1.00000 FALSE
1 0.00000 0.40000 0.20000 0.00000 TRUE
2 0.20000 0.40000 0.30000 0.05000 FALSE
3 0.20000 0.30000 0.25000 0.00000 TRUE
4 0.25000 0.30000 0.27500 0.00000 TRUE
5 0.27500 0.30000 0.28750 0.00000 TRUE
Reason for termination: Reached maximum number of iterations
Thanks!
Same idea as in #26 but for the other testing procedures as well.