cornellius-gp / linear_operator

A LinearOperator implementation to wrap the numerical nuts and bolts of GPyTorch
MIT License
95 stars 28 forks source link

[Bug] `pivoted_cholesky` fails with KeOps kernels #87

Open fteufel opened 12 months ago

fteufel commented 12 months ago

🐛 Bug

When using a KeOps kernel in GPyTorch, and making predictions (data larger than settings.min_preconditioning_size), the pivoted cholesky decomposition fails. This seems to be due to covar_func returning a pykeops LazyTensor rather than a LinearOperator, making to_dense() fail.

To reproduce

model is a SingleTaskGP with train_inputs of size [100, 2000, 6].

We use a KeOps kernel as laid out in the GPyTorch tutorials.

gpytorch.kernels.ScaleKernel(
        base_kernel=gpytorch.kernels.keops.MaternKernel(
            nu=2.5,
            ard_num_dims=ard_num_dims,
            batch_shape=batch_shape,
            lengthscale_prior=gpytorch.priors.torch_priors.GammaPrior(3.0, 6.0),
        ),
        batch_shape=batch_shape,
        outputscale_prior=gpytorch.priors.torch_priors.GammaPrior(2.0, 0.15),
)
# this fails
preds = model(X) # X being shape [100,2000,6] in my case

Stack trace/error message

  File "/fsx/home_dirs/fegt/BOSS/boss/acquisition.py", line 137, in forward
    preds = model(X)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/gpytorch/models/exact_gp.py", line 333, in __call__
    ) = self.prediction_strategy.exact_prediction(full_mean, full_covar)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/gpytorch/models/exact_prediction_strategies.py", line 289, in exact_prediction
    self.exact_predictive_mean(test_mean, test_train_covar),
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/gpytorch/models/exact_prediction_strategies.py", line 306, in exact_predictive_mean
    if len(self.mean_cache.shape) == 4:
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/gpytorch/utils/memoize.py", line 59, in g
    return _add_to_cache(self, cache_name, method(self, *args, **kwargs), *args, kwargs_pkl=kwargs_pkl)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/gpytorch/models/exact_prediction_strategies.py", line 256, in mean_cache
    mean_cache = train_train_covar.evaluate_kernel().solve(train_labels_offset).squeeze(-1)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/_linear_operator.py", line 2334, in solve
    return func.apply(self.representation_tree(), False, right_tensor, *self.representation())
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/torch/autograd/function.py", line 506, in apply
    return super().apply(*args, **kwargs)  # type: ignore[misc]
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/functions/_solve.py", line 53, in forward
    solves = _solve(linear_op, right_tensor)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/functions/_solve.py", line 20, in _solve
    preconditioner = linear_op.detach()._solve_preconditioner()
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/_linear_operator.py", line 806, in _solve_preconditioner
    base_precond, _, _ = self._preconditioner()

# Starting from here, we fail because we exceed settings.min_preconditioning_size

  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/added_diag_linear_operator.py", line 126, in _preconditioner
    self._piv_chol_self = self._linear_op.pivoted_cholesky(rank=max_iter)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/_linear_operator.py", line 1965, in pivoted_cholesky
    res, pivots = func(self.representation_tree(), rank, error_tol, *self.representation())
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/torch/autograd/function.py", line 506, in apply
    return super().apply(*args, **kwargs)  # type: ignore[misc]
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/functions/_pivoted_cholesky.py", line 24, in forward
    matrix_diag = matrix._approx_diagonal()
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/constant_mul_linear_operator.py", line 74, in _approx_diagonal
    res = self.base_linear_op._approx_diagonal()
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/_linear_operator.py", line 492, in _approx_diagonal
    return self._diagonal()
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/utils/memoize.py", line 59, in g
    return _add_to_cache(self, cache_name, method(self, *args, **kwargs), *args, kwargs_pkl=kwargs_pkl)
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/kernel_linear_operator.py", line 233, in _diagonal
    diag_mat = to_dense(self.covar_func(x1, x2, **tensor_params, **self.nontensor_params))
  File "/nfs_home/users/fegt/.conda/envs/botorch/lib/python3.10/site-packages/linear_operator/operators/_linear_operator.py", line 2987, in to_dense
    raise TypeError("object of class {} cannot be made into a Tensor".format(obj.__class__.__name__))
TypeError: object of class LazyTensor cannot be made into a Tensor

Expected Behavior

The LazyTensor should probably somehow be cast to a KernelLinearOperator

System information

Please complete the following information:

Additional context

Add any other context about the problem here.