cossio / RestrictedBoltzmannMachines.jl

Train and sample Restricted Boltzmann machines in Julia
MIT License
15 stars 3 forks source link

log_pseudolikelihood for GaussianRBM #25

Open bhomass opened 1 year ago

bhomass commented 1 year ago

has the GaussianRBM been tested with MNIST data the same way as the MNIST example for BinaryRBM?

When I created a notebook to run a test in the exact same fashion as the example code, it blows up on # println("log(PL) = ", mean(@time log_pseudolikelihood(rbm, train_x)))

and indeed, in the pseudolikelihood.jl file, there is no signature for substitution_matrix_sites() to accept rbm::RBM{<:Gaussian}

cossio commented 1 year ago

pseudolikelihood is not implemented for Gaussian visible layer. However for GaussianRBM, the likelihood can be computed exactly (no need for the pseudo likelihood approximation). This is implemented, see log_likelihood.

bhomass commented 1 year ago

thanks this works.

I loaded the real value MNIST data into GaussianRBM train_x = Array{Float}(train_x[:, :, train_y .== 0]) rbm = GaussianRBM((28,28), tuple(400)) and ends up with this error AssertionError: all((>)(0), λ) rescale_activations!(layer::RestrictedBoltzmannMachines.Gaussian{1, Matrix{Float64}}, λ::Vector{Float64}) @ RestrictedBoltzmannMachines ~/RestrictedBoltzmannMachines.jl/src/gauge/rescale_hidden.jl:46

have you seen this before?

cossio commented 1 year ago

Does this error happen after training? Can you post a full example? Thanks

bhomass commented 1 year ago

during training on pcd! call.

I followed the same process as in the mnist example, just change to real numbers.

Float = Float32
train_x = MLDatasets.MNIST(split=:train)[:].features
train_y = MLDatasets.MNIST(split=:train)[:].targets
train_x = Array{Float}(train_x[:, :, train_y .== 0])

rbm = GaussianRBM((28,28), tuple(400))
initialize!(rbm, train_x) # match single-site statistics

batchsize = 256
iters = 10000
history = MVHistory()
@time pcd!(
    rbm, train_x; iters, batchsize
)

AssertionError: all((>)(0), λ)

Stacktrace: [1] rescale_activations!(layer::RestrictedBoltzmannMachines.Gaussian{1, Matrix{Float64}}, λ::Vector{Float64}) @ RestrictedBoltzmannMachines ~/RestrictedBoltzmannMachines.jl/src/gauge/rescale_hidden.jl:46 [2] rescale_hidden!(rbm::RestrictedBoltzmannMachines.RBM{RestrictedBoltzmannMachines.Gaussian{2, Array{Float64, 3}}, RestrictedBoltzmannMachines.Gaussian{1, Matrix{Float64}}, Array{Float64, 3}}, λ::Vector{Float64}) @ RestrictedBoltzmannMachines ~/RestrictedBoltzmannMachines.jl/src/gauge/rescale_hidden.jl:10 [3] rescale_weights!(rbm::RestrictedBoltzmannMachines.RBM{RestrictedBoltzmannMachines.Gaussian{2, Array{Float64, 3}}, RestrictedBoltzmannMachines.Gaussian{1, Matrix{Float64}}, Array{Float64, 3}}) @ RestrictedBoltzmannMachines ~/RestrictedBoltzmannMachines.jl/src/gauge/rescale_hidden.jl:25 [4] pcd!(rbm::RestrictedBoltzmannMachines.RBM{RestrictedBoltzmannMachines.Gaussian{2, Array{Float64, 3}}, RestrictedBoltzmannMachines.Gaussian{1, Matrix{Float64}}, Array{Float64, 3}}, data::Array{Float32, 3}; batchsize::Int64, iters::Int64, wts::Nothing, steps::Int64, optim::Optimisers.Adam{Float32}, moments::Array{Float32, 3}, l2_fields::Int64, l1_weights::Int64, l2_weights::Int64, l2l1_weights::Int64, zerosum::Bool, rescale::Bool, callback::Returns{Nothing}, vm::Array{Float64, 3}, shuffle::Bool, ps::NamedTuple{(:visible, :hidden, :w), Tuple{Array{Float64, 3}, Matrix{Float64}, Array{Float64, 3}}}, state::NamedTuple{(:visible, :hidden, :w), Tuple{Optimisers.Leaf{Optimisers.Adam{Float32}, Tuple{Array{Float64, 3}, Array{Float64, 3}, Tuple{Float32, Float32}}}, Optimisers.Leaf{Optimisers.Adam{Float32}, Tuple{Matrix{Float64}, Matrix{Float64}, Tuple{Float32, Float32}}}, Optimisers.Leaf{Optimisers.Adam{Float32}, Tuple{Array{Float64, 3}, Array{Float64, 3}, Tuple{Float32, Float32}}}}}) @ RestrictedBoltzmannMachines ~/RestrictedBoltzmannMachines.jl/src/train/pcd.jl:68 [5] top-level scope @ ./timing.jl:273 [inlined] [6] top-level scope @ ./In[19]:0