(C:\Users\green\Anaconda3\envs\py35) C:\Users\green\Documents\Data\input>python train.py [--base_dir][C:/Users/green/Documen
ts/Data Competitions/Data Science Bowl 2018/input/data/unet_segmentations_binary
] [--train] [--val]
C:\Users\green\Anaconda3\envs\py35\lib\site-packages\h5py__init.py:36: Future
Warning: Conversion of the second argument of issubdtype from float to np.flo ating is deprecated. In future, it will be treated as np.float64 == np.dtype(f loat).type.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
TheanoShapedU-NET
2018-02-13 13:08:28.098000: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\
35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn
't compiled to use AVX instructions, but these are available on your machine and
could speed up CPU computations.
2018-02-13 13:08:28.098274: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\
35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn
't compiled to use AVX2 instructions, but these are available on your machine an
d could speed up CPU computations.
Traceback (most recent call last):
File "train.py", line 326, in
batch_size=params.batch_size, is_binary=params.is_b_binary)
File "C:\Users\green\Documents\Data\input\
models.py", line 400, in g_unet
x = LeakyReLU(0.2)(conv1)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\engine\topolo
gy.py", line 617, in call__
output = self.call(inputs, *kwargs)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\layers\advanc
ed_activations.py", line 46, in call
return K.relu(inputs, alpha=self.alpha)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\backend\tenso
rflow_backend.py", line 2918, in relu
x = tf.nn.leaky_relu(x, alpha)
AttributeError: module 'tensorflow.python.ops.nn' has no attribute 'leaky_relu'
swig/python detected a memory leak of type 'int64_t ', no destructor found.
(C:\Users\green\Anaconda3\envs\py35) C:\Users\green\Documents\Data\input>python train.py [--base_dir][C:/Users/green/Documen ts/Data Competitions/Data Science Bowl 2018/input/data/unet_segmentations_binary ] [--train] [--val] C:\Users\green\Anaconda3\envs\py35\lib\site-packages\h5py__init.py:36: Future Warning: Conversion of the second argument of issubdtype from
batch_size=params.batch_size, is_binary=params.is_b_binary)
File "C:\Users\green\Documents\Data\input\
models.py", line 400, in g_unet
x = LeakyReLU(0.2)(conv1)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\engine\topolo
gy.py", line 617, in call__
output = self.call(inputs, *kwargs)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\layers\advanc
ed_activations.py", line 46, in call
return K.relu(inputs, alpha=self.alpha)
File "C:\Users\green\Anaconda3\envs\py35\lib\site-packages\keras\backend\tenso
rflow_backend.py", line 2918, in relu
x = tf.nn.leaky_relu(x, alpha)
AttributeError: module 'tensorflow.python.ops.nn' has no attribute 'leaky_relu'
swig/python detected a memory leak of type 'int64_t ', no destructor found.
float
tonp.flo ating
is deprecated. In future, it will be treated asnp.float64 == np.dtype(f loat).type
. from ._conv import register_converters as _register_converters Using TensorFlow backend. TheanoShapedU-NET 2018-02-13 13:08:28.098000: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\ 35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn 't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-02-13 13:08:28.098274: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\ 35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn 't compiled to use AVX2 instructions, but these are available on your machine an d could speed up CPU computations. Traceback (most recent call last): File "train.py", line 326, in