cpeggy / DataStructure

0 stars 0 forks source link

Binary Search-Leecode #5

Open cpeggy opened 1 year ago

cpeggy commented 1 year ago

700. Search in a Binary Search Tree You are given the root of a binary search tree (BST) and an integer val.

Find the node in the BST that the node's value equals val and return the subtree rooted with that node. If such a node does not exist, return null.

Example 1: image

Input: root = [4,2,7,1,3], val = 2
Output: [2,1,3]

Example 2: image

Input: root = [4,2,7,1,3], val = 5
Output: []

Constraints:

The number of nodes in the tree is in the range [1, 5000]. 1 <= Node.val <= 107 root is a binary search tree. 1 <= val <= 107

cpeggy commented 1 year ago
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if root is None or root.val == val:
            return root
        elif val < root.val:
            return self.searchBST(root.left, val)
        else:
            return self.searchBST(root.right, val)
cpeggy commented 1 year ago

704. Binary Search Given an array of integers nums which is sorted in ascending order, and an integer target, write a function to search target in nums. If target exists, then return its index. Otherwise, return -1.

You must write an algorithm with O(log n) runtime complexity

Example 1:

Input: nums = [-1,0,3,5,9,12], target = 9
Output: 4
Explanation: 9 exists in nums and its index is 4

Example 2:

Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1
Explanation: 2 does not exist in nums so return -1

Constraints:

1 <= nums.length <= 104 -104 < nums[i], target < 104 All the integers in nums are unique. nums is sorted in ascending order.

cpeggy commented 1 year ago
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums) - 1

        while left <= right:
            m = (left + right) // 2
            if nums[m] == target:
                return m
            elif nums[m] < target:
                left = m + 1
            else:
                right = m - 1

        return -1
cpeggy commented 1 year ago

450. Delete Node in a BST

Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST. Basically, the deletion can be divided into two stages: Search for a node to remove. If the node is found, delete the node.

Example 1: image

Input: root = [5,3,6,2,4,null,7], key = 3
Output: [5,4,6,2,null,null,7]
Explanation: Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the above BST.
Please notice that another valid answer is [5,2,6,null,4,null,7] and it's also accepted.

Example 2: image

Input: root = [5,3,6,2,4,null,7], key = 0
Output: [5,3,6,2,4,null,7]
Explanation: The tree does not contain a node with value = 0.

Example 3:

Input: root = [], key = 0
Output: []

Constraints:

The number of nodes in the tree is in the range [0, 104]. -105 <= Node.val <= 105 Each node has a unique value. root is a valid binary search tree. -105 <= key <= 105

cpeggy commented 1 year ago
class Solution:
    def deleteNode(self, root: TreeNode, key: int) -> TreeNode:
        if not root:
            return None

        # 找到要刪除的節點
        if key < root.val:
            root.left = self.deleteNode(root.left, key)
        elif key > root.val:
            root.right = self.deleteNode(root.right, key)
        else:
            # 檢查節點的子節點情況
            if not root.left and not root.right:
                # 節點為目標節點,直接刪除
                return None
            elif root.left:
                # 節點有左子節點,將左子節點取代節點位置
                root.val = self.getPredecessor(root)
                root.left = self.deleteNode(root.left, root.val)
            else:
                # 節點有右子節點,將右子節點取代節點位置
                root.val = self.getSuccessor(root)
                root.right = self.deleteNode(root.right, root.val)

        return root

    def getPredecessor(self, node: TreeNode) -> int:
        node = node.left
        while node.right:
            node = node.right
        return node.val

    def getSuccessor(self, node: TreeNode) -> int:
        node = node.right
        while node.left:
            node = node.left
        return node.val