Closed lyriccoder closed 4 years ago
@yegor256 is it ok now?
@lyriccoder it's better, but the functionality of --exclude
is still very weird.
@yegor256 you have forgotten again, you asked to do it:
https://github.com/cqfn/aibolit/issues/363#issuecomment-646545392
@lyriccoder it seems I made a mistake in the specification, sorry. I will make a ticket about it now.
@rultor merge
@rultor merge
@acheshkov OK, I'll try to merge now. You can check the progress of the merge here
@rultor merge
@acheshkov @lyriccoder Oops, I failed. You can see the full log here (spent 42min)
each_block_type = ast.get_type(each_block)
/home/r/repo/aibolit/metrics/cognitiveC/cognitive_c.py:76: DeprecationWarning: Call to deprecated method get_type. (Use ASTNode functionality instead.)
assert(ast.get_type(node) == ASTNodeType.METHOD_INVOCATION)
/home/r/repo/aibolit/metrics/cognitiveC/cognitive_c.py:93: DeprecationWarning: Call to deprecated method get_binary_operation_name. (Use ASTNode functionality instead.)
bin_operator = ast.get_binary_operation_name(each_block)
/home/r/repo/aibolit/ast_framework/ast.py:149: DeprecationWarning: Call to deprecated method get_type. (Use ASTNode functionality instead.)
assert(self.get_type(node) == ASTNodeType.BINARY_OPERATION)
/home/r/repo/aibolit/ast_framework/ast.py:150: DeprecationWarning: Call to deprecated method children_with_type. (Use ASTNode functionality instead.)
name_node, = islice(self.children_with_type(node, ASTNodeType.STRING), 1)
/home/r/repo/aibolit/ast_framework/ast.py:151: DeprecationWarning: Call to deprecated method get_attr. (Use ASTNode functionality instead.)
return self.get_attr(name_node, 'string')
./home/r/repo/aibolit/metrics/cognitiveC/cognitive_c.py:49: DeprecationWarning: Call to deprecated method get_type. (Use ASTNode functionality instead.)
if ast.get_type(all_childs[2]) == ASTNodeType.IF_STATEMENT:
.../home/r/repo/aibolit/metrics/cognitiveC/cognitive_c.py:64: DeprecationWarning: Call to deprecated method get_type. (Use ASTNode functionality instead.)
if ast.get_type(binary_operation_node) != ASTNodeType.BINARY_OPERATION:
/home/r/repo/aibolit/metrics/cognitiveC/cognitive_c.py:67: DeprecationWarning: Call to deprecated method get_binary_operation_params. (Use ASTNode functionality instead.)
operator, left_side_node, right_side_node = ast.get_binary_operation_params(binary_operation_node)
/home/r/repo/aibolit/ast_framework/ast.py:214: DeprecationWarning: Call to deprecated method get_type. (Use ASTNode functionality instead.)
assert(self.get_type(binary_operation_node) == ASTNodeType.BINARY_OPERATION)
/home/r/repo/aibolit/ast_framework/ast.py:216: DeprecationWarning: Call to deprecated method get_attr. (Use ASTNode functionality instead.)
return BinaryOperationParams(self.get_attr(operation_node, 'string'), left_side_node, right_side_node)
..............sss..................sss................................sssssss......................................................................sssssssssssssss.............................sssssssssssss.......ss.........................................................................................................................................Number of features: 33
../home/r/repo/test/utils/test_cfg_builder.py:32: DeprecationWarning: Call to deprecated class JavaPackage. (This functionality must be transmitted to ASTNode)
java_package = JavaPackage(Path(__file__).parent.absolute() / 'SimpleClass.java')
..ssssssssss
----------------------------------------------------------------------
Ran 400 tests in 22.392s
OK (skipped=55)
python3 aibolit --version
Version 1.2.6rc1 is available, but you are using 0.0.0
aibolit 0.0.0
xcop
python3 -m test.integration.all
Processed files in testing:
0% 0/176 [00:00<?, ?it/s]
1% 1/176 [00:02<06:46, 2.32s/it]
1% 2/176 [00:03<05:56, 2.05s/it]
2% 3/176 [00:04<04:30, 1.57s/it]
2% 4/176 [00:07<06:08, 2.14s/it]
3% 5/176 [00:07<04:29, 1.58s/it]
3% 6/176 [00:10<05:19, 1.88s/it]
4% 7/176 [00:10<04:02, 1.44s/it]
5% 8/176 [00:11<03:27, 1.23s/it]
5% 9/176 [00:13<04:21, 1.56s/it]
6% 10/176 [00:14<03:39, 1.32s/it]
6% 11/176 [00:14<02:44, 1.00it/s]
7% 12/176 [00:16<03:19, 1.21s/it]
7% 13/176 [00:17<02:34, 1.05it/s]
8% 14/176 [00:18<03:15, 1.21s/it]
9% 15/176 [00:19<02:59, 1.12s/it]
9% 16/176 [00:20<02:45, 1.03s/it]
10% 17/176 [00:33<12:33, 4.74s/it]
10% 18/176 [00:34<09:08, 3.47s/it]
11% 19/176 [00:36<07:32, 2.88s/it]
11% 20/176 [00:36<05:50, 2.25s/it]
12% 21/176 [00:38<05:07, 1.98s/it]
12% 22/176 [00:47<10:26, 4.07s/it]
13% 23/176 [00:47<07:25, 2.91s/it]
14% 24/176 [00:51<08:15, 3.26s/it]
14% 25/176 [00:51<05:59, 2.38s/it]
15% 26/176 [00:55<06:44, 2.70s/it]
15% 27/176 [00:55<04:54, 1.98s/it]
16% 28/176 [00:58<05:36, 2.27s/it]
16% 29/176 [00:58<04:04, 1.66s/it]
17% 30/176 [01:05<07:49, 3.22s/it]
18% 31/176 [01:06<06:20, 2.62s/it]
18% 32/176 [01:08<05:33, 2.31s/it]
19% 33/176 [01:10<05:12, 2.18s/it]
19% 34/176 [01:10<04:02, 1.71s/it]
20% 35/176 [01:11<03:37, 1.54s/it]
20% 36/176 [01:14<04:34, 1.96s/it]
21% 37/176 [01:16<04:17, 1.85s/it]
22% 38/176 [01:17<03:44, 1.63s/it]
22% 39/176 [01:21<05:21, 2.35s/it]
23% 40/176 [01:26<07:06, 3.13s/it]
23% 41/176 [01:28<05:54, 2.63s/it]
24% 42/176 [01:42<13:29, 6.04s/it]
24% 43/176 [01:45<11:48, 5.33s/it]
25% 44/176 [01:45<08:23, 3.81s/it]
26% 45/176 [01:46<06:21, 2.91s/it]
26% 46/176 [01:47<04:40, 2.16s/it]
27% 47/176 [01:47<03:29, 1.62s/it]
27% 48/176 [01:52<05:34, 2.62s/it]
28% 49/176 [01:54<05:00, 2.36s/it]
28% 50/176 [01:54<03:49, 1.82s/it]
29% 51/176 [02:27<23:23, 11.23s/it]
30% 52/176 [02:34<20:11, 9.77s/it]
30% 53/176 [02:34<14:13, 6.94s/it]
31% 54/176 [03:00<25:42, 12.64s/it]
31% 55/176 [03:07<22:00, 10.91s/it]
32% 56/176 [03:12<18:03, 9.03s/it]
32% 57/176 [03:14<14:06, 7.11s/it]
33% 58/176 [03:15<09:57, 5.06s/it]
34% 59/176 [03:25<13:01, 6.68s/it]
34% 60/176 [03:28<10:39, 5.51s/it]
35% 61/176 [03:28<07:45, 4.05s/it]
35% 62/176 [03:29<05:36, 2.95s/it]
36% 63/176 [03:29<04:07, 2.19s/it]
36% 64/176 [03:33<05:00, 2.68s/it]
37% 65/176 [03:40<07:28, 4.04s/it]
38% 66/176 [03:43<06:49, 3.73s/it]
38% 67/176 [04:03<15:36, 8.60s/it]
39% 68/176 [04:25<22:41, 12.61s/it]
39% 69/176 [04:26<16:26, 9.22s/it]
40% 70/176 [04:32<14:22, 8.14s/it]
40% 71/176 [04:33<10:18, 5.89s/it]
41% 72/176 [04:38<09:48, 5.66s/it]
41% 73/176 [04:38<07:01, 4.09s/it]
42% 74/176 [04:39<05:27, 3.21s/it]
43% 75/176 [04:41<04:31, 2.69s/it]
43% 76/176 [04:41<03:13, 1.93s/it]
44% 77/176 [04:56<09:23, 5.69s/it]
44% 78/176 [04:56<06:37, 4.06s/it]
45% 79/176 [04:57<05:01, 3.11s/it]
45% 80/176 [05:01<05:41, 3.56s/it]
46% 81/176 [05:02<04:02, 2.55s/it]
47% 82/176 [05:04<04:07, 2.64s/it]
47% 83/176 [05:07<04:02, 2.60s/it]
48% 84/176 [05:09<03:40, 2.40s/it]
48% 85/176 [05:12<03:56, 2.60s/it]
49% 86/176 [05:29<10:22, 6.91s/it]
49% 87/176 [05:31<08:06, 5.47s/it]
50% 88/176 [05:32<05:58, 4.07s/it]
51% 89/176 [05:37<06:13, 4.30s/it]
51% 90/176 [05:37<04:42, 3.28s/it]
52% 91/176 [05:40<04:10, 2.95s/it]
52% 92/176 [05:41<03:34, 2.56s/it]
53% 93/176 [05:54<07:40, 5.55s/it]
53% 94/176 [05:54<05:21, 3.92s/it]
54% 95/176 [05:55<04:01, 2.98s/it]
55% 96/176 [05:57<03:37, 2.72s/it]
55% 97/176 [06:01<03:57, 3.01s/it]
56% 98/176 [06:02<03:14, 2.49s/it]
56% 99/176 [06:06<03:49, 2.98s/it]
57% 101/176 [06:07<02:47, 2.23s/it]
58% 102/176 [06:09<02:44, 2.22s/it]
59% 103/176 [06:09<01:59, 1.64s/it]
59% 104/176 [06:10<01:44, 1.45s/it]
60% 105/176 [06:16<03:14, 2.73s/it]
60% 106/176 [06:44<11:49, 10.13s/it]
61% 107/176 [06:46<08:51, 7.71s/it]
61% 108/176 [07:20<17:40, 15.60s/it]
62% 109/176 [07:22<12:50, 11.50s/it]
62% 110/176 [07:22<08:56, 8.13s/it]
63% 111/176 [07:33<09:43, 8.98s/it]
64% 112/176 [07:35<07:24, 6.95s/it]
64% 113/176 [07:41<06:57, 6.62s/it]
65% 114/176 [07:42<05:05, 4.92s/it]
65% 115/176 [07:42<03:35, 3.54s/it]
66% 116/176 [07:43<02:45, 2.76s/it]
66% 117/176 [08:00<06:48, 6.93s/it]
67% 118/176 [08:00<04:44, 4.91s/it]
68% 119/176 [08:01<03:27, 3.64s/it]
68% 120/176 [08:01<02:27, 2.64s/it]
69% 121/176 [08:01<01:46, 1.93s/it]
69% 122/176 [08:13<04:32, 5.05s/it]
70% 123/176 [08:14<03:10, 3.59s/it]
70% 124/176 [08:26<05:17, 6.10s/it]
71% 125/176 [08:26<03:48, 4.49s/it]
72% 126/176 [08:28<03:07, 3.75s/it]
72% 127/176 [08:30<02:30, 3.08s/it]
73% 128/176 [08:35<02:52, 3.58s/it]
73% 129/176 [08:40<03:07, 3.99s/it]
74% 130/176 [09:35<14:48, 19.32s/it]
74% 131/176 [09:38<10:51, 14.48s/it]
75% 132/176 [09:53<10:44, 14.66s/it]
76% 133/176 [09:57<08:17, 11.56s/it]
76% 134/176 [09:58<05:49, 8.33s/it]
77% 135/176 [10:00<04:20, 6.35s/it]
77% 136/176 [10:00<03:01, 4.54s/it]
78% 137/176 [10:09<03:51, 5.95s/it]
78% 138/176 [10:11<02:52, 4.55s/it]
79% 139/176 [10:55<10:08, 16.44s/it]
80% 140/176 [10:58<07:26, 12.41s/it]
80% 141/176 [11:00<05:30, 9.45s/it]
81% 142/176 [11:02<03:58, 7.03s/it]
81% 143/176 [11:03<02:58, 5.40s/it]
82% 144/176 [11:11<03:10, 5.96s/it]
82% 145/176 [11:13<02:27, 4.76s/it]
83% 146/176 [11:19<02:42, 5.40s/it]
84% 147/176 [11:49<06:04, 12.57s/it]
84% 148/176 [11:50<04:16, 9.17s/it]
85% 149/176 [11:56<03:38, 8.08s/it]
85% 150/176 [12:01<03:08, 7.25s/it]
86% 151/176 [12:06<02:45, 6.61s/it]
86% 152/176 [12:11<02:26, 6.10s/it]
87% 153/176 [12:14<02:02, 5.31s/it]
88% 154/176 [12:16<01:31, 4.17s/it]
88% 155/176 [12:30<02:32, 7.28s/it]
89% 156/176 [12:34<02:06, 6.32s/it]
89% 157/176 [12:35<01:29, 4.68s/it]
90% 158/176 [12:36<01:03, 3.54s/it]
90% 159/176 [12:37<00:44, 2.63s/it]
91% 160/176 [12:41<00:49, 3.09s/it]
91% 161/176 [12:42<00:37, 2.47s/it]
92% 162/176 [12:45<00:36, 2.59s/it]
93% 163/176 [12:47<00:31, 2.41s/it]
93% 164/176 [12:52<00:39, 3.28s/it]
94% 165/176 [12:53<00:28, 2.56s/it]
94% 166/176 [13:02<00:44, 4.46s/it]
95% 167/176 [13:03<00:32, 3.59s/it]
95% 168/176 [13:34<01:33, 11.70s/it]
96% 169/176 [13:36<01:01, 8.85s/it]
97% 170/176 [13:42<00:48, 8.01s/it]
97% 171/176 [13:52<00:43, 8.64s/it]
98% 172/176 [13:54<00:26, 6.62s/it]
98% 173/176 [13:55<00:14, 4.72s/it]
99% 174/176 [13:55<00:06, 3.37s/it]
99% 175/176 [13:56<00:02, 2.59s/it]
100% 176/176 [14:01<00:00, 3.47s/it]
python3 -m test.integration.test_model
Start training...
End training. Elapsed time: 615.32 secs
Features for the whole dataset: ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'P12', 'P13', 'P14', 'P15', 'P16', 'P17', 'P18', 'P19', 'P20_5', 'P20_7', 'P20_11', 'P21', 'P22', 'P23', 'P24', 'P25', 'P26', 'P27', 'P28', 'P29', 'P30', 'P31', 'P32', 'M1', 'M2', 'M3_1', 'M3_2', 'M3_3', 'M3_4', 'M4', 'M5', 'M6', 'M7']
Start training...
End training. Elapsed time: 692.67 secs
Model features: Index(['P18', 'P9', 'M2', 'M5'], dtype='object')
./test/integration/test_recommend.sh
Success: aibolit check was successful
+ mv /home/r/repo .
++ whoami
+ chown -R root repo
+ '[' -n '' ']'
++ whoami
+ sudo chown -R rultor repo
+ cd repo
+ git push origin master
remote: error: GH006: Protected branch update failed for refs/heads/master.
remote: error: At least 1 approving review is required by reviewers with write access.
To git@github.com:cqfn/aibolit.git
! [remote rejected] master -> master (protected branch hook declined)
error: failed to push some refs to 'git@github.com:cqfn/aibolit.git'
container 51898fbb0a0d91c9baf8104fb4f6bace32fa5a1d4f792d1c3dbb72cb31213b81 is dead
Wed Aug 12 12:33:32 CEST 2020
@acheshkov make an approve, and then merge
ask @yegor256 to review
@rultor merge
Please specify the following in the description: