Closed Sairam13001 closed 3 years ago
you should first transform your HRSC2016 to coco format
Yeah, I used HRSC2DOTA and HRSC2JSON from here to do that. Please tell me if it is not sufficient?
you should first transform your HRSC2016 to coco format
Or, could you please tell me how to convert HRSC2016 to coco format
Thank you. Got it
Hai! Could someone please tell me how to solve this error. I am trying to train ReDet on HRSC2016 dataset. This is the error I am getting.
ReResNet Orientation: 8 Fix Params: False 2021-08-04 14:12:24,505 - INFO - Distributed training: False 2021-08-04 14:13:14,962 - INFO - load model from: work_dirs/ReResNet_pretrain/re_resnet50_c8_batch256-25b16846.pth 2021-08-04 14:13:14,989 - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: head.fc.weight, head.fc.bias
missing keys in source state_dict: layer3.5.conv3.filter, layer4.2.conv3.filter, layer4.2.conv1.filter, layer2.3.conv2.filter, layer1.1.conv3.filter, layer4.1.conv3.filter, layer3.2.conv1.filter, layer2.1.conv2.filter, layer3.4.conv1.filter, layer3.3.conv2.filter, layer1.0.conv2.filter, layer1.2.conv3.filter, layer2.0.downsample.0.filter, layer3.0.conv1.filter, layer3.0.conv2.filter, layer3.1.conv3.filter, layer2.2.conv2.filter, layer3.4.conv2.filter, layer4.0.conv1.filter, layer2.2.conv3.filter, layer1.0.downsample.0.filter, layer4.0.conv3.filter, layer4.2.conv2.filter, layer2.0.conv3.filter, layer3.2.conv2.filter, layer3.3.conv3.filter, layer4.0.conv2.filter, layer3.4.conv3.filter, layer4.1.conv2.filter, layer3.1.conv1.filter, layer2.1.conv3.filter, layer2.1.conv1.filter, layer1.0.conv1.filter, layer2.0.conv2.filter, layer1.1.conv1.filter, layer1.2.conv2.filter, layer2.3.conv3.filter, layer4.0.downsample.0.filter, layer3.5.conv2.filter, layer3.5.conv1.filter, layer2.3.conv1.filter, layer2.0.conv1.filter, conv1.filter, layer1.0.conv3.filter, layer1.1.conv2.filter, layer3.0.downsample.0.filter, layer3.0.conv3.filter, layer4.1.conv1.filter, layer1.2.conv1.filter, layer3.2.conv3.filter, layer3.3.conv1.filter, layer3.1.conv2.filter, layer2.2.conv1.filter
loading annotations into memory... Traceback (most recent call last): File "tools/train.py", line 95, in
main()
File "tools/train.py", line 75, in main
train_dataset = get_dataset(cfg.data.train)
File "/home/ai20resch13001/ReDet/mmdet/datasets/utils.py", line 109, in get_dataset
dset = obj_from_dict(data_info, datasets)
File "/DATA/ai20resch13001/anaconda3/envs/redet2/lib/python3.7/site-packages/mmcv/runner/utils.py", line 78, in obj_from_dict
return obj_type(**args)
File "/home/ai20resch13001/ReDet/mmdet/datasets/custom.py", line 68, in init
self.img_infos = self.load_annotations(ann_file)
File "/home/ai20resch13001/ReDet/mmdet/datasets/coco.py", line 25, in load_annotations
self.coco = COCO(ann_file)
File "/DATA/ai20resch13001/anaconda3/envs/redet2/lib/python3.7/site-packages/pycocotools/coco.py", line 86, in init
assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset))
AssertionError: annotation file format <class 'list'> not supported