Open misraya opened 2 years ago
Hi~
Did you adjust the learning rate and total training iterations, or you just train the model with batch size=16
with 1 GPU?
Hi, sorry for my late response. Since 8 GPUs split the batch, and batch_size=16 could fit into 1 GPU I'm using, keeping the batch size fixed, I decided not to adjust the number of iterations or the learning rate. Would you suggest any particular adjustment?
Can you reproduce the results of baseline method Faster R-CNN
?
@csuhan Great paper and results! Hi @misraya , Thanks for raising the issue.
This is what I am getting when I run and everything else the same as downloaded from the Repo
python tools/train_net.py --num-gpus 1 --config-file configs/faster_rcnn_R_50_FPN_3x_opendet.yaml
[08/13 16:06:05] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_2007_test using 2007 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
77.90 | 0.00 | 0.00 | 77.90 | 28.61 | 91.20 | 78.83 | 26.98 | 90.58 |
[08/13 16:14:39] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_coco_20_40_test using 2012 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
13.89 | 13.06 | 11584.00 | 55.64 | 19.85 | 73.26 | 12.39 | 23.10 | 29.52 |
[08/13 16:24:12] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_coco_20_60_test using 2012 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
13.25 | 15.80 | 17597.00 | 53.23 | 17.95 | 72.45 | 9.12 | 26.78 | 20.33 |
08/13 16:51:08] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_coco_5000_test using 2012 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
17.95 | 11.58 | 8479.00 | 72.15 | 17.67 | 91.20 | 10.77 | 21.85 | 26.35 |
[08/13 17:01:26] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_coco_10000_test using 2012 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
16.75 | 18.33 | 17113.00 | 67.21 | 13.33 | 91.20 | 12.98 | 30.13 | 26.07 |
[08/13 17:17:29] opendet2.evaluation.pascal_voc_evaluation INFO: Evaluating voc_coco_20000_test using 2012 metric. | mAP | WI | AOSE | AP@K | P@K | R@K | AP@U | P@U | R@U |
---|---|---|---|---|---|---|---|---|---|
15.23 | 25.07 | 34141.00 | 60.93 | 9.26 | 91.20 | 14.85 | 36.77 | 26.14 |
Hi,
Amazing work on open-set detection! I trained the model after doing the dataset separation steps you suggest, and with exact same configs. The only difference is that I used 1 GPU instead of 8 GPUs, and these are the results I obtained. Interestingly, WI and AOSE metrics are worse, but AP is better. Do you think this much difference is expected just from using fewer GPUs, or is there some other issue I need to look for? Thanks in advance.
Result