csxmli2016 / textbsr

This is a simple text image blind super-resolution model, using BSRGAN
Other
87 stars 5 forks source link

Add support other SR model questions #8

Closed kynthesis closed 5 months ago

kynthesis commented 5 months ago

Hello Xiaoming Li,

It's me again. 😅 I tried to inference textbsr using RGT, but it didn't work as expected. I tried to figure out the weird thing here but turned out clueless. I don't want to bother you again, but I have no one else to ask. I apologize for that. I have learned a lot from your projects. Thank you for your work!!

In textbsr.py, I changed line weight_path = load_file_from_url(pretrain_model_url['x4']) to weight_path="textbsr/checkpoints/RGT_S_x4_SN.pth"

In TextEnhancement.py, I added RGT arch into the code.

# -*- coding: utf-8 -*-
import numpy as np
import cv2
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
from cnstd import CnStd
import warnings

import torch.utils.checkpoint as checkpoint
import math
from timm.models.layers import DropPath, trunc_normal_
from einops.layers.torch import Rearrange
from einops import rearrange, repeat

warnings.filterwarnings("ignore")
##########################################################################################
###############Text Restoration Model revised by xiaoming li
##########################################################################################

class TextRestoration(object):
    def __init__(
        self,
        TextModelPath,
        device="cuda",
    ):
        self.device = device
        self.modelText = RGT(
            upscale=4,
            in_chans=3,
            img_size=64,
            img_range=1.0,
            depth=[6, 6, 6, 6, 6, 6],
            embed_dim=180,
            num_heads=[6, 6, 6, 6, 6, 6],
            mlp_ratio=2,
            resi_connection="1conv",
            split_size=[8, 32],
            c_ratio=0.5,
        )
        self.modelText.load_state_dict(
            # torch.load(TextModelPath)["params_ema"], strict=True
            torch.load(TextModelPath)["params"], strict=True
        )
        self.modelText.eval()

        for k, v in self.modelText.named_parameters():
            v.requires_grad = False
        self.modelText = self.modelText.to(self.device)
        torch.cuda.empty_cache()
        self.std = CnStd(
            model_name="db_resnet34",
            rotated_bbox=True,
            model_backend="pytorch",
            box_score_thresh=0.3,
            min_box_size=10,
            context=device,
        )
        self.insize = 64

    def handle_texts(self, img, bg=None, sf=4, is_aligned=False):
        ExistText = 0
        height, width = img.shape[:2]
        bg_height, bg_width = bg.shape[:2]
        box_infos = self.std.detect(img)

        # if bg is None:
        #     bg = cv2.resize(img, (width*sf, height*sf))
        full_mask = np.zeros(bg.shape, dtype=np.float32)
        full_img = np.zeros(bg.shape, dtype=np.float32)  # +255

        orig_texts, enhanced_texts = [], []

        if not is_aligned:
            for i, box_info in enumerate(box_infos["detected_texts"]):
                box = box_info["box"].astype(
                    int
                )  # left top, right top, right bottom, left bottom, [width, height]
                std_cropped = box_info["cropped_img"]

                h, w = std_cropped.shape[:2]
                score = box_info["score"]
                if w < 10 or h < 10:
                    continue

                scale_wl = 0.4  # 0.04
                scale_hl = 0.4

                move_w = (box[0][0] + box[2][0]) * (scale_wl) / 2
                move_h = (box[0][1] + box[2][1]) * (scale_hl) / 2

                extend_box = box.copy()

                extend_box[0][0] = extend_box[0][0] * (1 + scale_wl) - move_w
                extend_box[0][1] = extend_box[0][1] * (1 + scale_hl) - move_h
                extend_box[1][0] = extend_box[1][0] * (1 + scale_wl) - move_w
                extend_box[1][1] = extend_box[1][1] * (1 + scale_hl) - move_h
                extend_box[2][0] = extend_box[2][0] * (1 + scale_wl) - move_w
                extend_box[2][1] = extend_box[2][1] * (1 + scale_hl) - move_h
                extend_box[3][0] = extend_box[3][0] * (1 + scale_wl) - move_w
                extend_box[3][1] = extend_box[3][1] * (1 + scale_hl) - move_h

                if w > h:
                    ref_h = self.insize
                    ref_w = int(ref_h * w / h)
                else:
                    ref_w = self.insize
                    ref_h = int(ref_w * h / w)
                ref_point = np.float32([[0, 0], [ref_w, 0], [ref_w, ref_h], [0, ref_h]])
                det_point = np.float32(extend_box)

                matrix = cv2.getPerspectiveTransform(det_point, ref_point)
                inv_matrix = cv2.getPerspectiveTransform(ref_point * sf, det_point * sf)

                cropped_img = cv2.warpPerspective(
                    img,
                    matrix,
                    (ref_w, ref_h),
                    borderMode=cv2.BORDER_REPLICATE,
                    flags=cv2.INTER_LINEAR,
                )
                in_img = cropped_img

                LQ = transforms.ToTensor()(in_img)
                LQ = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ)
                LQ = LQ.unsqueeze(0)
                SQ = self.modelText(LQ.to(self.device))
                SQ = SQ * 0.5 + 0.5
                SQ = SQ.squeeze(0).permute(1, 2, 0)  # .flip(2) # RGB->BGR
                SQ = np.clip(SQ.float().cpu().numpy(), 0, 1) * 255.0
                orig_texts.append(in_img)
                enhanced_texts.append(SQ)

                tmp_mask = np.ones(SQ.shape).astype(float) * 255

                warp_mask = cv2.warpPerspective(
                    tmp_mask, inv_matrix, (bg_width, bg_height), flags=3
                )
                warp_img = cv2.warpPerspective(
                    SQ, inv_matrix, (bg_width, bg_height), flags=3
                )

                full_img = full_img + warp_img
                full_mask = full_mask + warp_mask

            index = full_mask > 0
            full_img[index] = full_img[index] / full_mask[index]

            full_mask = np.clip(full_mask, 0, 1)
            kernel = np.ones((7, 7), dtype=np.uint8)
            full_mask_dilate = cv2.erode(full_mask, kernel, 1)

            full_mask_blur = cv2.GaussianBlur(full_mask_dilate, (3, 3), 0)
            full_mask_blur = cv2.GaussianBlur(full_mask_blur, (3, 3), 0)

            img = cv2.convertScaleAbs(
                bg * (1 - full_mask_blur) + full_img * 255 * full_mask_blur
            )

        else:
            if height > width:
                up_s = self.insize / width
                ds = int(up_s * height)
                in_img = cv2.resize(img, (self.insize, ds))
            else:
                up_s = self.insize / height
                ds = int(up_s * width)
                in_img = cv2.resize(img, (ds, self.insize))

            LQ = transforms.ToTensor()(in_img)
            LQ = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ)
            LQ = LQ.unsqueeze(0)

            SQ = self.modelText(LQ.to(self.device))
            SQ = SQ * 0.5 + 0.5
            SQ = SQ.squeeze(0).permute(1, 2, 0)  # .flip(2) # RGB->BGR
            SQ = np.clip(SQ.float().cpu().numpy(), 0, 1) * 255.0
            orig_texts.append(in_img[:, :, ::-1])
            enhanced_texts.append(SQ)

        return img, orig_texts, enhanced_texts

def img2windows(img, H_sp, W_sp):
    """
    Input: Image (B, C, H, W)
    Output: Window Partition (B', N, C)
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = (
        img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
    )
    return img_perm

def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    Input: Window Partition (B', N, C)
    Output: Image (B, H, W, C)
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img

class Gate(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.conv = nn.Conv2d(
            dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
        )  # DW Conv

    def forward(self, x, H, W):
        # Split
        x1, x2 = x.chunk(2, dim=-1)
        B, N, C = x.shape
        x2 = (
            self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
            .flatten(2)
            .transpose(-1, -2)
            .contiguous()
        )

        return x1 * x2

class MLP(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.sg = Gate(hidden_features // 2)
        self.fc2 = nn.Linear(hidden_features // 2, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)

        x = self.sg(x, H, W)
        x = self.drop(x)

        x = self.fc2(x)
        x = self.drop(x)
        return x

class DynamicPosBias(nn.Module):
    # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
    """Dynamic Relative Position Bias.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        residual (bool):  If True, use residual strage to connect conv.
    """

    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads),
        )

    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases)  # 2Gh-1 * 2Gw-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos

class WindowAttention(nn.Module):
    def __init__(
        self,
        dim,
        idx,
        split_size=[8, 8],
        dim_out=None,
        num_heads=6,
        attn_drop=0.0,
        proj_drop=0.0,
        qk_scale=None,
        position_bias=True,
    ):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.split_size = split_size
        self.num_heads = num_heads
        self.idx = idx
        self.position_bias = position_bias

        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        if idx == 0:
            H_sp, W_sp = self.split_size[0], self.split_size[1]
        elif idx == 1:
            W_sp, H_sp = self.split_size[0], self.split_size[1]
        else:
            print("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp

        if self.position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
            # generate mother-set
            position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
            position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
            biases = biases.flatten(1).transpose(0, 1).contiguous().float()
            self.register_buffer("rpe_biases", biases)

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(self.H_sp)
            coords_w = torch.arange(self.W_sp)
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
            coords_flatten = torch.flatten(coords, 1)
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()
            relative_coords[:, :, 0] += self.H_sp - 1
            relative_coords[:, :, 1] += self.W_sp - 1
            relative_coords[:, :, 0] *= 2 * self.W_sp - 1
            relative_position_index = relative_coords.sum(-1)
            self.register_buffer("relative_position_index", relative_position_index)

        self.attn_drop = nn.Dropout(attn_drop)

    def im2win(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        x = (
            x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
            .contiguous()
        )
        return x

    def forward(self, qkv, H, W, mask=None):
        """
        Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
        Output: x (B, H, W, C)
        """
        q, k, v = qkv[0], qkv[1], qkv[2]

        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        # partition the q,k,v, image to window
        q = self.im2win(q, H, W)
        k = self.im2win(k, H, W)
        v = self.im2win(v, H, W)

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)  # B head N C @ B head C N --> B head N N

        # calculate drpe
        if self.position_bias:
            pos = self.pos(self.rpe_biases)
            # select position bias
            relative_position_bias = pos[self.relative_position_index.view(-1)].view(
                self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
            )
            relative_position_bias = relative_position_bias.permute(
                2, 0, 1
            ).contiguous()
            attn = attn + relative_position_bias.unsqueeze(0)

        N = attn.shape[3]

        # use mask for shift window
        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
                0
            )
            attn = attn.view(-1, self.num_heads, N, N)

        attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
        attn = self.attn_drop(attn)

        x = attn @ v
        x = x.transpose(1, 2).reshape(
            -1, self.H_sp * self.W_sp, C
        )  # B head N N @ B head N C

        # merge the window, window to image
        x = windows2img(x, self.H_sp, self.W_sp, H, W)  # B H' W' C

        return x

class L_SA(nn.Module):
    # The implementation builds on CAT code https://github.com/zhengchen1999/CAT/blob/main/basicsr/archs/cat_arch.py
    def __init__(
        self,
        dim,
        num_heads,
        split_size=[2, 4],
        shift_size=[1, 2],
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        idx=0,
        reso=64,
        rs_id=0,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.split_size = split_size
        self.shift_size = shift_size
        self.idx = idx
        self.rs_id = rs_id
        self.patches_resolution = reso
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        assert (
            0 <= self.shift_size[0] < self.split_size[0]
        ), "shift_size must in 0-split_size0"
        assert (
            0 <= self.shift_size[1] < self.split_size[1]
        ), "shift_size must in 0-split_size1"

        self.branch_num = 2

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(drop)

        self.attns = nn.ModuleList(
            [
                WindowAttention(
                    dim // 2,
                    idx=i,
                    split_size=split_size,
                    num_heads=num_heads // 2,
                    dim_out=dim // 2,
                    qk_scale=qk_scale,
                    attn_drop=attn_drop,
                    proj_drop=drop,
                    position_bias=True,
                )
                for i in range(self.branch_num)
            ]
        )

        if (self.rs_id % 2 == 0 and self.idx > 0 and (self.idx - 2) % 4 == 0) or (
            self.rs_id % 2 != 0 and self.idx % 4 == 0
        ):
            attn_mask = self.calculate_mask(
                self.patches_resolution, self.patches_resolution
            )

            self.register_buffer("attn_mask_0", attn_mask[0])
            self.register_buffer("attn_mask_1", attn_mask[1])
        else:
            attn_mask = None

            self.register_buffer("attn_mask_0", None)
            self.register_buffer("attn_mask_1", None)

        self.get_v = nn.Conv2d(
            dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
        )  # DW Conv

    def calculate_mask(self, H, W):
        # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
        # calculate attention mask for Rwin
        img_mask_0 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=0
        img_mask_1 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=1
        h_slices_0 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        w_slices_0 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )

        h_slices_1 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )
        w_slices_1 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        cnt = 0
        for h in h_slices_0:
            for w in w_slices_0:
                img_mask_0[:, h, w, :] = cnt
                cnt += 1
        cnt = 0
        for h in h_slices_1:
            for w in w_slices_1:
                img_mask_1[:, h, w, :] = cnt
                cnt += 1

        # calculate mask for H-Shift
        img_mask_0 = img_mask_0.view(
            1,
            H // self.split_size[0],
            self.split_size[0],
            W // self.split_size[1],
            self.split_size[1],
            1,
        )
        img_mask_0 = (
            img_mask_0.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[0], self.split_size[1], 1)
        )  # nW, sw[0], sw[1], 1
        mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
        attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
        attn_mask_0 = attn_mask_0.masked_fill(
            attn_mask_0 != 0, float(-100.0)
        ).masked_fill(attn_mask_0 == 0, float(0.0))

        # calculate mask for V-Shift
        img_mask_1 = img_mask_1.view(
            1,
            H // self.split_size[1],
            self.split_size[1],
            W // self.split_size[0],
            self.split_size[0],
            1,
        )
        img_mask_1 = (
            img_mask_1.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[1], self.split_size[0], 1)
        )  # nW, sw[1], sw[0], 1
        mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
        attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
        attn_mask_1 = attn_mask_1.masked_fill(
            attn_mask_1 != 0, float(-100.0)
        ).masked_fill(attn_mask_1 == 0, float(0.0))

        return attn_mask_0, attn_mask_1

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """

        B, L, C = x.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3)  # 3, B, HW, C
        # v without partition
        v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)

        max_split_size = max(self.split_size[0], self.split_size[1])
        pad_l = pad_t = 0
        pad_r = (max_split_size - W % max_split_size) % max_split_size
        pad_b = (max_split_size - H % max_split_size) % max_split_size

        qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2)  # 3B C H W
        qkv = (
            F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
            .reshape(3, B, C, -1)
            .transpose(-2, -1)
        )  # l r t b
        _H = pad_b + H
        _W = pad_r + W
        _L = _H * _W

        if (self.rs_id % 2 == 0 and self.idx > 0 and (self.idx - 2) % 4 == 0) or (
            self.rs_id % 2 != 0 and self.idx % 4 == 0
        ):
            qkv = qkv.view(3, B, _H, _W, C)
            # H-Shift
            qkv_0 = torch.roll(
                qkv[:, :, :, :, : C // 2],
                shifts=(-self.shift_size[0], -self.shift_size[1]),
                dims=(2, 3),
            )
            qkv_0 = qkv_0.view(3, B, _L, C // 2)
            # V-Shift
            qkv_1 = torch.roll(
                qkv[:, :, :, :, C // 2 :],
                shifts=(-self.shift_size[1], -self.shift_size[0]),
                dims=(2, 3),
            )
            qkv_1 = qkv_1.view(3, B, _L, C // 2)

            if self.patches_resolution != _H or self.patches_resolution != _W:
                mask_tmp = self.calculate_mask(_H, _W)
                # H-Rwin
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
                # V-Rwin
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))

            else:
                # H-Rwin
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
                # V-Rwin
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)

            x1 = torch.roll(
                x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
            )
            x2 = torch.roll(
                x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
            )
            x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
            x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
            # Concat
            attened_x = torch.cat([x1, x2], dim=2)
        else:
            # V-Rwin
            x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            # H-Rwin
            x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            # Concat
            attened_x = torch.cat([x1, x2], dim=2)

        # mix
        lcm = self.get_v(v)
        lcm = lcm.permute(0, 2, 3, 1).contiguous().view(B, L, C)

        x = attened_x + lcm

        x = self.proj(x)
        x = self.proj_drop(x)

        return x

class RG_SA(nn.Module):
    """
    Recursive-Generalization Self-Attention (RG-SA).
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        c_ratio (float): channel adjustment factor.
    """

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        c_ratio=0.5,
    ):
        super(RG_SA, self).__init__()
        assert (
            dim % num_heads == 0
        ), f"dim {dim} should be divided by num_heads {num_heads}."
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.cr = int(dim * c_ratio)  # scaled channel dimension

        # self.scale = qk_scale or head_dim ** -0.5
        self.scale = qk_scale or (head_dim * c_ratio) ** -0.5

        # RGM
        self.reduction1 = nn.Conv2d(dim, dim, kernel_size=4, stride=4, groups=dim)
        self.dwconv = nn.Conv2d(
            dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
        )
        self.conv = nn.Conv2d(dim, self.cr, kernel_size=1, stride=1)
        self.norm_act = nn.Sequential(nn.LayerNorm(self.cr), nn.GELU())
        # CA
        self.q = nn.Linear(dim, self.cr, bias=qkv_bias)
        self.k = nn.Linear(self.cr, self.cr, bias=qkv_bias)
        self.v = nn.Linear(self.cr, dim, bias=qkv_bias)

        # CPE
        self.cpe = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)

        self.proj = nn.Linear(dim, dim)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, H, W):
        B, N, C = x.shape

        _scale = 1

        # reduction
        _x = x.permute(0, 2, 1).reshape(B, C, H, W).contiguous()

        if self.training:
            _time = max(int(math.log(H // 4, 4)), int(math.log(W // 4, 4)))
        else:
            _time = max(int(math.log(H // 16, 4)), int(math.log(W // 16, 4)))
            if _time < 2:
                _time = 2  # testing _time must equal or larger than training _time (2)

        _scale = 4**_time

        # Recursion xT
        for _ in range(_time):
            _x = self.reduction1(_x)

        _x = (
            self.conv(self.dwconv(_x))
            .reshape(B, self.cr, -1)
            .permute(0, 2, 1)
            .contiguous()
        )  # shape=(B, N', C')
        _x = self.norm_act(_x)

        # q, k, v, where q_shape=(B, N, C'), k_shape=(B, N', C'), v_shape=(B, N', C)
        q = (
            self.q(x)
            .reshape(B, N, self.num_heads, int(self.cr / self.num_heads))
            .permute(0, 2, 1, 3)
        )
        k = (
            self.k(_x)
            .reshape(B, -1, self.num_heads, int(self.cr / self.num_heads))
            .permute(0, 2, 1, 3)
        )
        v = (
            self.v(_x)
            .reshape(B, -1, self.num_heads, int(C / self.num_heads))
            .permute(0, 2, 1, 3)
        )

        # corss-attention
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # CPE
        # v_shape=(B, H, N', C//H)
        v = v + self.cpe(
            v.transpose(1, 2)
            .reshape(B, -1, C)
            .transpose(1, 2)
            .contiguous()
            .view(B, C, H // _scale, W // _scale)
        ).view(B, C, -1).view(B, self.num_heads, int(C / self.num_heads), -1).transpose(
            -1, -2
        )

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x

class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        idx=0,
        rs_id=0,
        split_size=[2, 4],
        shift_size=[1, 2],
        reso=64,
        c_ratio=0.5,
        layerscale_value=1e-4,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        if idx % 2 == 0:
            self.attn = L_SA(
                dim,
                split_size=split_size,
                shift_size=shift_size,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                drop=drop,
                idx=idx,
                reso=reso,
                rs_id=rs_id,
            )
        else:
            self.attn = RG_SA(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop,
                c_ratio=c_ratio,
            )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = MLP(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            out_features=dim,
            act_layer=act_layer,
        )
        self.norm2 = norm_layer(dim)

        # HAI
        self.gamma = nn.Parameter(
            layerscale_value * torch.ones((dim)), requires_grad=True
        )

    def forward(self, x, x_size):
        H, W = x_size

        res = x

        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))

        # HAI
        x = x + (res * self.gamma)

        return x

class ResidualGroup(nn.Module):

    def __init__(
        self,
        dim,
        reso,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_paths=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        depth=2,
        use_chk=False,
        resi_connection="1conv",
        rs_id=0,
        split_size=[8, 8],
        c_ratio=0.5,
    ):
        super().__init__()
        self.use_chk = use_chk
        self.reso = reso

        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_paths[i],
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                    idx=i,
                    rs_id=rs_id,
                    split_size=split_size,
                    shift_size=[split_size[0] // 2, split_size[1] // 2],
                    c_ratio=c_ratio,
                )
                for i in range(depth)
            ]
        )

        if resi_connection == "1conv":
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == "3conv":
            self.conv = nn.Sequential(
                nn.Conv2d(dim, dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim, 3, 1, 1),
            )

    def forward(self, x, x_size):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """
        H, W = x_size
        res = x
        for blk in self.blocks:
            if self.use_chk:
                x = checkpoint.checkpoint(blk, x, x_size)
            else:
                x = blk(x, x_size)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
        x = self.conv(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        x = res + x

        return x

class Upsample(nn.Sequential):
    """Upsample module.
    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(
                f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
            )
        super(Upsample, self).__init__(*m)

class RGT(nn.Module):

    def __init__(
        self,
        img_size=64,
        in_chans=3,
        embed_dim=180,
        depth=[2, 2, 2, 2],
        num_heads=[2, 2, 2, 2],
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.1,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        use_chk=False,
        upscale=2,
        img_range=1.0,
        resi_connection="1conv",
        split_size=[8, 8],
        c_ratio=0.5,
        **kwargs,
    ):
        super().__init__()

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale

        # ------------------------- 1, Shallow Feature Extraction ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, Deep Feature Extraction ------------------------- #
        self.num_layers = len(depth)
        self.use_chk = use_chk
        self.num_features = self.embed_dim = (
            embed_dim  # num_features for consistency with other models
        )
        heads = num_heads

        self.before_RG = nn.Sequential(
            Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
        )

        curr_dim = embed_dim
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
        ]  # stochastic depth decay rule

        self.layers = nn.ModuleList()
        for i in range(self.num_layers):
            layer = ResidualGroup(
                dim=embed_dim,
                num_heads=heads[i],
                reso=img_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
                act_layer=act_layer,
                norm_layer=norm_layer,
                depth=depth[i],
                use_chk=use_chk,
                resi_connection=resi_connection,
                rs_id=i,
                split_size=split_size,
                c_ratio=c_ratio,
            )
            self.layers.append(layer)

        self.norm = norm_layer(curr_dim)
        # build the last conv layer in deep feature extraction
        if resi_connection == "1conv":
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == "3conv":
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(
                nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
            )

        # ------------------------- 3, Reconstruction ------------------------- #
        self.conv_before_upsample = nn.Sequential(
            nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
        )
        self.upsample = Upsample(upscale, num_feat)
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(
            m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
        ):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward_features(self, x):
        _, _, H, W = x.shape
        x_size = [H, W]
        x = self.before_RG(x)
        for layer in self.layers:
            x = layer(x, x_size)
        x = self.norm(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)

        return x

    def forward(self, x):
        """
        Input: x: (B, C, H, W)
        """
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        x = self.conv_first(x)
        x = self.conv_after_body(self.forward_features(x)) + x
        x = self.conv_before_upsample(x)
        x = self.conv_last(self.upsample(x))

        x = x / self.img_range + self.mean
        return x

if __name__ == "__main__":
    print("Test Text Crop and Alignment")

But the output results are not expected. the text area did not seem to be upscaled. Inference using RGT z5231953897576_76a6dcc9b08264f0698a9144af1158b7_x4-min

Inference using textbsr z5231953897576_76a6dcc9b08264f0698a9144af1158b7_BSRGANText

LR image: z5231953897576_76a6dcc9b08264f0698a9144af1158b7

Could you make a quick investigation about this?

Best regards, Khoa D. Vo