Open VictorZoo opened 2 years ago
Some details are as follows:
with author's model
Evaluate scene chess: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_chess.txt
[12/06/2021 16:26:38 pixloc.utils.eval INFO]
Median errors: 0.028m, 0.956deg
Percentage of test images localized within:
1cm, 1deg : 5.10%
2cm, 2deg : 31.15%
3cm, 3deg : 55.80%
5cm, 5deg : 84.70%
25cm, 2deg : 90.25%
50cm, 5deg : 94.40%
500cm, 10deg : 94.85%
[12/06/2021 16:26:38 pixloc INFO] Evaluate scene fire: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_fire.txt
[12/06/2021 16:26:41 pixloc.utils.eval INFO]
Median errors: 0.024m, 0.954deg
Percentage of test images localized within:
1cm, 1deg : 9.10%
2cm, 2deg : 41.35%
3cm, 3deg : 63.15%
5cm, 5deg : 78.10%
25cm, 2deg : 79.15%
50cm, 5deg : 87.85%
500cm, 10deg : 92.85%
[12/06/2021 16:26:41 pixloc INFO] Evaluate scene heads: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_heads.txt
[12/06/2021 16:26:42 pixloc.utils.eval INFO]
Median errors: 0.011m, 0.836deg
Percentage of test images localized within:
1cm, 1deg : 39.30%
2cm, 2deg : 79.40%
3cm, 3deg : 84.30%
5cm, 5deg : 86.30%
25cm, 2deg : 82.80%
50cm, 5deg : 86.80%
500cm, 10deg : 87.80%
[12/06/2021 16:26:42 pixloc INFO] Evaluate scene office: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_office.txt
[12/06/2021 16:26:44 pixloc.utils.eval INFO]
Median errors: 0.035m, 1.049deg
Percentage of test images localized within:
1cm, 1deg : 3.25%
2cm, 2deg : 21.45%
3cm, 3deg : 39.92%
5cm, 5deg : 67.80%
25cm, 2deg : 81.20%
50cm, 5deg : 95.50%
500cm, 10deg : 97.10%
[12/06/2021 16:26:44 pixloc INFO] Evaluate scene pumpkin: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_pumpkin.txt
[12/06/2021 16:26:46 pixloc.utils.eval INFO]
Median errors: 0.052m, 1.463deg
Percentage of test images localized within:
1cm, 1deg : 1.85%
2cm, 2deg : 9.35%
3cm, 3deg : 21.05%
5cm, 5deg : 48.75%
25cm, 2deg : 61.15%
50cm, 5deg : 82.40%
500cm, 10deg : 84.95%
[12/06/2021 16:26:46 pixloc INFO] Evaluate scene redkitchen: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_redkitchen.txt
[12/06/2021 16:26:51 pixloc.utils.eval INFO]
Median errors: 0.045m, 1.482deg
Percentage of test images localized within:
1cm, 1deg : 1.62%
2cm, 2deg : 13.24%
3cm, 3deg : 30.08%
5cm, 5deg : 55.10%
25cm, 2deg : 65.08%
50cm, 5deg : 85.20%
500cm, 10deg : 88.78%
[12/06/2021 16:26:51 pixloc INFO] Evaluate scene stairs: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_7scenes_stairs.txt
[12/06/2021 16:26:52 pixloc.utils.eval INFO]
Median errors: 0.069m, 1.719deg
Percentage of test images localized within:
1cm, 1deg : 0.70%
2cm, 2deg : 8.20%
3cm, 3deg : 18.90%
5cm, 5deg : 36.60%
25cm, 2deg : 51.00%
50cm, 5deg : 74.00%
500cm, 10deg : 86.00%
pixloc_7scenes_chess.txt pixloc_7scenes_fire.txt pixloc_7scenes_heads.txt pixloc_7scenes_office.txt pixloc_7scenes_pumpkin.txt pixloc_7scenes_redkitchen.txt pixloc_7scenes_stairs.txt
Evaluate scene OldHospital: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_Cambridge_OldHospital.txt
[12/06/2021 21:11:18 pixloc.utils.eval INFO]
Median errors: 0.508m, 0.831deg
Percentage of test images localized within:
1cm, 1deg : 0.00%
2cm, 2deg : 0.00%
3cm, 3deg : 0.00%
5cm, 5deg : 0.55%
25cm, 2deg : 31.32%
50cm, 5deg : 49.45%
500cm, 10deg : 94.51%
Evaluate scene StMarysChurch: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_Cambridge_StMarysChurch.txt
[12/06/2021 21:44:31 pixloc.utils.eval INFO]
Median errors: 0.143m, 0.354deg
Percentage of test images localized within:
1cm, 1deg : 0.38%
2cm, 2deg : 1.70%
3cm, 3deg : 4.15%
5cm, 5deg : 10.57%
25cm, 2deg : 70.19%
50cm, 5deg : 81.32%
500cm, 10deg : 86.60%
Evaluate scene ShopFacade: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_Cambridge_ShopFacade.txt
[12/06/2021 21:46:27 pixloc.utils.io INFO] Imported 103 images from pixloc_Cambridge_ShopFacade.txt
[12/06/2021 21:46:27 pixloc.utils.eval INFO]
Median errors: 0.055m, 0.218deg
Percentage of test images localized within:
1cm, 1deg : 0.00%
2cm, 2deg : 5.83%
3cm, 3deg : 17.48%
5cm, 5deg : 44.66%
25cm, 2deg : 89.32%
50cm, 5deg : 94.17%
500cm, 10deg : 96.12%
Evaluate scene KingsCollege: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_Cambridge_KingsCollege.txt
[12/06/2021 21:22:38 pixloc.utils.io INFO] Imported 343 images from pixloc_Cambridge_KingsCollege.txt
[12/06/2021 21:22:38 pixloc.utils.eval INFO]
Median errors: 0.167m, 0.263deg
Percentage of test images localized within:
1cm, 1deg : 0.00%
2cm, 2deg : 0.58%
3cm, 3deg : 1.75%
5cm, 5deg : 7.00%
25cm, 2deg : 66.47%
50cm, 5deg : 82.51%
500cm, 10deg : 97.08%
Evaluate scene GreatCourt: /home/victor/disk1/Disk_E/pixloc/outputs/results/pixloc_Cambridge_GreatCourt.txt
[12/06/2021 22:16:25 pixloc.utils.eval INFO]
Median errors: 0.412m, 0.175deg
Percentage of test images localized within:
1cm, 1deg : 0.00%
2cm, 2deg : 0.00%
3cm, 3deg : 0.92%
5cm, 5deg : 2.50%
25cm, 2deg : 36.05%
50cm, 5deg : 54.08%
500cm, 10deg : 74.21%
There is another possibility, the checkpoints_best.tar
downloaded by python -m pixloc.download --select checkpoints
is not the best model. Because in the .log
file (megadepth), it displays that there is only 4 epoch. Pleasw cheack into it.
Just a recommendation. For one check way, may you type python -m pixloc.download --select checkpoints
and use the downloaded checkpoints_best.tar
to see if it matches the results in paper. Just a recommendation.
Sorry to bother you. Thank you!
It turns out that the default path pointed to the raw SuperPoint+SuperGlue SfM model, while the results reported in the paper are based on the dense depth maps to cleanup the point cloud. This has now been fixed by https://github.com/cvg/pixloc/commit/0072dc75e2e64b6a77dc7e92f07ac008d9875812. Here are the results that you should get: | Chess | Fire | Heads | Office | Pumpkin | Kitchen | Stairs | |
---|---|---|---|---|---|---|---|---|
Pixloc_author | 2.4/0.81 | 1.9/0.79 | 1.3/0.86 | 2.6/0.79 | 4.1/1.17 | 3.4/1.21 | 4.6/1.22 | |
Paper | 2/0.8 | 2/0.73 | 1/0.82 | 3/0.82 | 4/1.21 | 3/1.2 | 5/1.3 |
Let me run these numbers again.
Let's track this issue in https://github.com/cvg/pixloc/issues/20
Let's keep this in https://github.com/cvg/pixloc/issues/23. I feel that this is a similar setup issue as with the CMU dataset.
These are the results that I obtain for Cambridge Landmarks: | Court | King’s | Hospital | Shop | St. Mary’s | |
---|---|---|---|---|---|---|
Pixloc code | 28.6/0.15 | 13.0/0.22 | 18.4/0.35 | 4.4/0.22 | 8.7/0.27 | |
Paper | 30/0.12 | 14/0.24 | 16/0.32 | 5/0.23 | 10.0/0.34 |
Again there seems to be a discrepancy between your setup and mine. All experiments were conducted with an RTX 2080 Ti and torch==1.10.0+cu102. Output of pip freeze
Hi @Skydes , thanks for your solution. I changed reference_sfm='{scene}/sfm_superpoint+superglue+depth/'
and got the similar results to paper. Detail :
Chess | Fire | Heads | Office | Pumpkin | Kitchen | Stairs | |
---|---|---|---|---|---|---|---|
Pixloc_author | 2.4/0.81 | 1.9/0.78 | 1.3/0.85 | 2.7/0.81 | 4.1/1.16 | 3.4/1.21 | 4.8/1.30 |
Pixloc_reproduce | 2.4/0.80 | 1.9/0.79 | 1.2/0.87 | 2.7/0.81 | 4.2/1.18 | 3.4/1.20 | 5.2/1.20 |
Paper | 2/0.8 | 2/0.73 | 1/0.82 | 3/0.82 | 4/1.21 | 3/1.2 | 5/1.3 |
As for Cambridge datasets, I notice that in your last block saids "Pixloc_release". It means the release
version not the master
version in this repo?
The evaluation is ran with the master
branch of the repository.
Dear Author,
Sorry to bother you.
I have download the dataset and checkpoints with command
python -m pixloc.download --select [dataset name] checkpoints
. Then, I try to evaluate the datasets withpython -m pixloc.run_[7Scenes|Cambridge|Aachen|CMU|RobotCar]
(without--from pose
) and got the results. However, it shows different results from the paper. The results are as followed:7_scene
Pixloc_author means use the original
checkpoint_best.tar
, and Pixloc_reproduce uses the reproduced model (running for 18 epoch by myself).It is interesting to note, for Pixloc_author and Pixloc_reproduce, the results are different from the paper, but similar to each others.
Cambridge
Also different from the original results.
Aachen
Note that, the results are similar to the issue #24
CMU
Original:
See, the results also are similar to issue #20 .
My Torch version == 1.7.1 and Numpy == 1.21.2. It's worth to note that when using the model trained by myself or author's model , it will got similar results (see 7Scenes) but different from the paper listed results. I'm also eager to know what went wrong, and if you could help me, I'd appreciate it.
By the way, I will use reproduced model to test Cambridge, Aachen and CMU. To find if it's still the same as the best model that you provide, but different from the paper's results.