czczup / ViT-Adapter

[ICLR 2023 Spotlight] Vision Transformer Adapter for Dense Predictions
https://arxiv.org/abs/2205.08534
Apache License 2.0
1.26k stars 139 forks source link

ModuleNotFoundError: No module named 'MultiScaleDeformableAttention' #176

Open Githia opened 5 months ago

Githia commented 5 months ago
  1. 你好,我的电脑系统是Windows11,其他的python环境和mmseg都是根据readme配置的,在编译'MultiScaleDeformableAttention',执行指令bash make.sh时,出现

running build_ext E:\mmseg\ops\torch\utils\cpp_extension.py:370: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend. warnings.warn(msg.format('we could not find ninja.')) E:\mmseg\ops\torch\utils\cpp_extension.py:305: UserWarning: Error checking compiler version for cl: 'utf-8' codec can't decode byte 0xd3 in position 0: invalid continuation byte
warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'MultiScaleDeformableAttention' extension E:\VS\1\VC\Tools\MSVC\14.29.30133\bin\HostX86\x64\cl.exe /c /nologo /O2 /W3 /GL /DNDEBUG /MD -DWITH_CUDA -IE:\mmseg\ops\src -IE:\mmseg\ops\torch\include -IE:\mmseg\ops\torch\include\t orch\csrc\api\include -IE:\mmseg\ops\torch\include\TH -IE:\mmseg\ops\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include" -IE:\Miniconda3lj\envs\open mmlab\include -IE:\Miniconda3lj\envs\openmmlab\Include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\ATLMFC\include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\include\10. 0.19041.0\ucrt" "-IE:\Windows Kits\10\include\10.0.19041.0\shared" "-IE:\Windows Kits\10\include\10.0.19041.0\um" "-IE:\Windows Kits\10\include\10.0.19041.0\winrt" "-IE:\Windows Kits\ 10\include\10.0.19041.0\cppwinrt" -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\Include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\um" "-IE:\Win dows Kits\10\Include\10.0.19041.0\cppwinrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\shared" "-IE:\Windows Kits\10\Include\10.0.19041.0\winrt" /EHsc /TpE:\mmseg\ops\src\cpu\ms_defor m_attn_cpu.cpp /Fobuild\temp.win-amd64-cpython-38\Release\mmseg\ops\src\cpu\ms_deform_attn_cpu.obj /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=MultiScaleDeformableAttention -D_GLIBCXX_USE_CXX11_ABI=0 ms_deform_attn_cpu.cpp E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=at::Tensor ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=at::Tensor ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=at::Tensor ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/core/TensorBody.h(734): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=at::Tensor ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=at::Generator ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=at::Generator ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=at::Generator ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/core/TensorBody.h(800): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=at::Generator ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::InlineDeviceGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=c10::impl::InlineDeviceGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=c10::impl::InlineDeviceGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<c10::impl::InlineDeviceGuard>”的引用
E:\mmseg\ops\torch\include\c10/core/impl/InlineDeviceGuard.h(427): note: 查看对正在编译的 类 模板 实例化“c10::optional<c10::impl::InlineDeviceGuard>”的引 用 E:\mmseg\ops\torch\include\c10/core/DeviceGuard.h(178): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineOptionalDeviceGuard”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::InlineDeviceGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::string ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::string ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::string ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type_base.h(107): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::string ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::ShapeSymbol,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::vector<c10::ShapeSymbol,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::vector<c10::ShapeSymbol,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::ShapeSymbol,std::allocator>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(351): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::ShapeSymbol,std::allocator>>”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::ShapeSymbol,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::optional,std::allocator<c10::optional>>>”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(425): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::optional,std::allocator<c10::optional>>>”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(664): note: 查看对正在编译的 类 模板 实例化“c10::VaryingShape”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::optional,std::allocator<c10::optional>>>”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(425): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::optional,std::allocator<c10::optional>>>” 的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(470): note: 查看对正在编译的 类 模板 实例化“c10::VaryingShape”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<c10::optional,std::allocator<c10::optional>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<int64_t,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::vector<int64_t,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::vector<int64_t,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<int64_t,std::allocator>>”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(568): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<int64_t,std::allocator>>”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<int64_t,std::allocator> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=c10::QualifiedName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=c10::QualifiedName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=c10::QualifiedName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/core/jit_type.h(903): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=c10::QualifiedName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::InlineStreamGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=c10::impl::InlineStreamGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=c10::impl::InlineStreamGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<c10::impl::InlineStreamGuard>”的引用
E:\mmseg\ops\torch\include\c10/core/impl/InlineStreamGuard.h(196): note: 查看对正在编译的 类 模板 实例化“c10::optional<c10::impl::InlineStreamGuard>”的引 用 E:\mmseg\ops\torch\include\c10/core/StreamGuard.h(139): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineOptionalStreamGuard”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::InlineStreamGuard ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::VirtualGuardImpl ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=c10::impl::VirtualGuardImpl ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=c10::impl::VirtualGuardImpl ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\c10/core/impl/InlineStreamGuard.h(231): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 with [ T=c10::impl::VirtualGuardImpl ] E:\mmseg\ops\torch\include\c10/core/StreamGuard.h(162): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineMultiStreamGuard”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=c10::impl::VirtualGuardImpl ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>>>”的引用 E:\mmseg\ops\torch\include\ATen/core/ivalue_inl.h(362): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>>>”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=std::vector<std::reference_wrapper,std::allocator<std::reference_wrapper>> ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=c10::OperatorName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=c10::OperatorName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=c10::OperatorName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/record_function.h(306): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=c10::OperatorName ] E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t”: 已将析构函数隐式定义为“已删除” with [ T=at::DimVector ] E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t”的引用 with [ T=at::DimVector ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base”的引用 with [ T=at::DimVector ] E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase”的引用 E:\mmseg\ops\torch\include\ATen/TensorIterator.h(616): note: 查看对正在编译的 类 模板 实例化“c10::optional”的引用 E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base”: 已将析构函数隐式定义为“已删除” with [ T=at::DimVector ] "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc" -c E:\mmseg\ops\src\cuda\ms_deform_attn_cuda.cu -o build\temp.win-amd64-cpython-38\Release\mmseg\ops\src\cuda\ms_de form_attn_cuda.obj -IE:\mmseg\ops\src -IE:\mmseg\ops\torch\include -IE:\mmseg\ops\torch\include\torch\csrc\api\include -IE:\mmseg\ops\torch\include\TH -IE:\mmseg\ops\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include" -IE:\Miniconda3lj\envs\openmmlab\include -IE:\Miniconda3lj\envs\openmmlab\Include -IE:\VS\1\VC\Tools\MSVC\14.29.3 0133\ATLMFC\include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\include\10.0.19041.0\shared" "-IE:\Windows Kits\ 10\include\10.0.19041.0\um" "-IE:\Windows Kits\10\include\10.0.19041.0\winrt" "-IE:\Windows Kits\10\include\10.0.19041.0\cppwinrt" -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Wi ndows Kits\10\Include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\um" "-IE:\Windows Kits\10\Include\10.0.19041.0\cppwinrt" "-IE:\Windows Kits\10\Include\10.0.19041.0 \shared" "-IE:\Windows Kits\10\Include\10.0.19041.0\winrt" -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -Xcudafe --diag_suppress=dll_interface_conflict_none_assum ed -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=base_class_has_different_dll_interface -Xcompiler /EHsc -Xcompiler /wd4190 -Xcompiler /wd4018 -Xcompil er /wd4275 -Xcompiler /wd4267 -Xcompiler /wd4244 -Xcompiler /wd4251 -Xcompiler /wd4819 -Xcompiler /MD -DCUDA_NO_HALF_OPERATORS -DCUDA_NO_HALF_CONVERSIONS -DCUDA_NOBFLOAT16 CONVERSIONS -DCUDA_NO_HALF2_OPERATORS --expt-relaxed-constexpr -DCUDA_HAS_FP16=1 -DCUDA_NO_HALF_OPERATORS -DCUDA_NO_HALF_CONVERSIONS -D__CUDA_NO_HALF2_OPERATORS__ -DTORC H_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=MultiScaleDeformableAttention -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 --use-local-env ms_deform_attn_cuda.cu E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(127): error: identifier "grad_output_n" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_sample_loc_size" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_attn_weight_size" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_sampling_loc" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_attn_weight" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: no instance of function template "ms_deformable_col2im_cuda" matches the argument list argument types are: (c10::cuda::CUDAStream, , double , int64_t , int64_t , , , const int, const int, const int, const int, const int, const int, const int, double , , )

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_sample_loc_size" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_attn_weight_size" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_sampling_loc" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_attn_weight" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: no instance of function template "ms_deformable_col2im_cuda" matches the argument list argument types are: (c10::cuda::CUDAStream, , float , int64_t , int64_t , , , const int, const int, const int, const int, const int, const int, const int, float , , )

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(145): error: identifier "grad_sampling_loc" is undefined

E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(145): error: identifier "grad_attn_weight" is undefined

E:/mmseg/ops/src\cuda/ms_deform_im2col_cuda.cuh(258): warning: variable "q_col" was declared but never referenced detected during: instantiation of "void ms_deformable_im2col_gpu_kernel(int, const scalar_t , const int64_t , const int64_t , const scalar_t , const scalar_t , int, int, int, int, int, int, int, scalar_t ) [with scalar_t=double]" (943): here instantiation of "void ms_deformable_im2col_cuda(cudaStream_t, const scalar_t , const int64_t , const int64_t , const scalar_t , const scalar_t , int, int, int, int, int, int, int, scalar_t ) [with scalar_t=double]" E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(64): here

E:/mmseg/ops/src\cuda/ms_deform_im2col_cuda.cuh(258): warning: variable "q_col" was declared but never referenced detected during: instantiation of "void ms_deformable_im2col_gpu_kernel(int, const scalar_t , const int64_t , const int64_t , const scalar_t , const scalar_t , int, int, int, int, int, int, int, scalar_t ) [with scalar_t=float]" (943): here instantiation of "void ms_deformable_im2col_cuda(cudaStream_t, const scalar_t , const int64_t , const int64_t , const scalar_t , const scalar_t , int, int, int, int, int, int, int, scalar_t ) [with scalar_t=float]" E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(64): here

25 errors detected in the compilation of "E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu". error: command 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc.exe' failed with exit code 1

是否是因为windows系统编译不了'MultiScaleDeformableAttention'?

2.后来我在网上查了资料,尝试用mmcv模块自带的from mmcv.ops.multi_scale_deform_attn import ext_module as MSDA代替ops\functions\ms_deform_attn_func.py 中的import MultiScaleDeformableAttention as MSDA,在运行训练脚本时,出现错误:

Traceback (most recent call last): File "E:/mmsegmentation-0.20.2/train.py", line 217, in main() File "E:/mmsegmentation-0.20.2/train.py", line 206, in main train_segmentor( File "E:\mmsegmentation-0.20.2\mmseg\apis\train.py", line 167, in train_segmentor runner.run(data_loaders, cfg.workflow) File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\mmcv\runner\iter_based_runner.py", line 134, in run iter_runner(iter_loaders[i], *kwargs) File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\mmcv\runner\iter_based_runner.py", line 67, in train self.call_hook('after_train_iter') File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\mmcv\runner\base_runner.py", line 309, in call_hook getattr(hook, fn_name)(self) File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\mmcv\runner\hooks\optimizer.py", line 56, in after_train_iter runner.outputs['loss'].backward() File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\torch_tensor.py", line 255, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs) File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\torch\autograd__init__.py", line 147, in backward Variable._execution_engine.run_backward( File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\torch\autograd\function.py", line 87, in apply return self._forward_cls.backward(self, args) # type: ignore[attr-defined] File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\torch\autograd\function.py", line 204, in wrapper outputs = fn(ctx, args) File "E:\Miniconda3lj\envs\openmmlab\lib\site-packages\torch\cuda\amp\autocast_mode.py", line 236, in decorate_bwd return bwd(args, **kwargs) File "E:\mmseg\ops\functions\ms_deform_attn_func.py", line 42, in backward MSDA.ms_deform_attn_backward( TypeError: ms_deform_attn_backward(): incompatible function arguments. The following argument types are supported:

  1. (value: at::Tensor, value_spatial_shapes: at::Tensor, value_level_start_index: at::Tensor, sampling_locations: at::Tensor, attention_weights: at::Tensor, grad_output: at::Tensor, grad_value: at::Tensor, grad_sampling_loc: at::Tensor, grad_attn_weight: at::Tensor, im2col_step: int) -> None

Invoked with: tensor([[[[ 1.0454e+00, 2.3037e+00, 7.8711e-02, ..., -5.2629e-02, -2.0575e+00, 3.8382e-01], [ 4.4317e-01, -1.9688e+00, -7.4302e-01, ..., 1.1384e-01, -2.0322e+00, -9.8970e-01], [-1.4092e+00, 9.1649e-01, 4.5920e-01, ..., 7.8782e-02, 2.3319e-02, 1.0307e+00], ..., [-4.7453e-01, 6.1668e-03, 8.4582e-01, ..., -4.2253e-01, 9.2638e-01, 5.2819e-01], [-5.0433e-02, -1.9279e+00, 8.2762e-02, ..., 5.4080e-01, 5.2500e-01, 2.8486e-01], [-1.0713e+00, -6.2969e-02, 5.8540e-01, ..., 1.4663e+00, -1.4296e+00, -1.2585e+00]],

     [[ 1.1206e+00,  2.4906e+00, -3.1013e-02,  ..., -3.0609e-02,
       -2.2217e+00,  1.4448e-01],
      [ 6.1139e-01, -2.0068e+00, -6.6372e-01,  ...,  2.2328e-01,
       -2.0233e+00, -9.4682e-01],
      [-1.2682e+00,  8.6923e-01,  2.0708e-01,  ..., -4.7062e-02,
       -1.1046e-01,  1.1453e+00],
      ...,
      [-6.3431e-01,  2.1591e-02,  9.5461e-01,  ..., -4.7739e-01,
        9.2620e-01,  2.3050e-01],
      [ 1.9415e-01, -1.9220e+00,  3.1868e-01,  ...,  4.6656e-01,
        4.0112e-01,  4.0854e-01],
      [-1.0031e+00, -1.0892e-01,  6.4965e-01,  ...,  1.3789e+00,
       -1.4427e+00, -1.0564e+00]],

     [[ 9.0757e-01,  2.8214e+00, -1.7081e-01,  ..., -1.4807e-01,
       -1.9186e+00,  3.8623e-01],
      [ 1.4501e-01, -2.3035e+00, -1.0328e+00,  ...,  1.5632e-01,
       -2.1178e+00, -1.1422e+00],
      [-1.2786e+00,  4.0894e-01,  5.7620e-01,  ...,  3.7977e-01,
        1.3790e-01,  1.2952e+00],
      ...,
      [-7.2484e-01,  3.4538e-01,  5.0384e-01,  ..., -3.6696e-01,
        8.6514e-01,  1.8609e-01],
      [-1.0860e-01, -1.8703e+00,  5.4616e-01,  ...,  3.8461e-01,
        1.0382e-01,  5.3416e-01],
      [-1.3383e+00,  2.1359e-01,  6.7868e-01,  ...,  1.4641e+00,
       -1.5306e+00, -1.0518e+00]],

     ...,

     [[ 1.0929e+00,  2.7581e+00, -8.2794e-01,  ..., -3.3875e-01,
       -1.5017e+00,  6.0941e-01],
      [ 8.2336e-01, -1.9411e+00, -1.1339e+00,  ...,  7.6681e-01,
       -2.5302e+00, -9.1900e-01],
      [-1.7683e+00,  1.9924e-01,  1.1286e+00,  ..., -3.1640e-01,
        5.3762e-01,  1.3179e+00],
      ...,
      [-9.3323e-01, -8.5072e-02,  5.8708e-01,  ...,  4.3338e-01,
        3.7068e-01,  6.0760e-01],
      [-2.6206e-01, -1.5947e+00,  7.4005e-01,  ...,  3.7379e-01,
        3.2166e-01,  4.6654e-01],
      [-1.2336e+00,  8.4531e-01,  7.8242e-01,  ...,  1.7001e+00,
       -5.5930e-01, -1.4831e+00]],

     [[ 1.0318e+00,  2.7551e+00, -8.5547e-01,  ..., -4.2486e-01,
       -1.3242e+00,  6.2919e-01],
      [ 8.6186e-01, -1.7788e+00, -1.2767e+00,  ...,  8.3591e-01,
       -2.5157e+00, -1.0009e+00],
      [-1.6732e+00,  2.8615e-01,  1.1921e+00,  ..., -4.1708e-01,
        3.6207e-01,  1.1855e+00],
      ...,
      [-9.5871e-01, -2.7266e-01,  3.8468e-01,  ...,  3.5823e-01,
        1.8915e-01,  6.9922e-01],
      [-2.5619e-01, -1.7919e+00,  6.1408e-01,  ...,  5.4967e-01,
        1.8969e-01,  5.0725e-01],
      [-1.2818e+00,  1.0523e+00,  8.7130e-01,  ...,  1.5627e+00,
       -3.2631e-01, -1.5450e+00]],

     [[ 1.0850e+00,  2.8336e+00, -8.6054e-01,  ..., -4.4391e-01,
       -1.1734e+00,  6.0740e-01],
      [ 8.3954e-01, -1.7373e+00, -1.3910e+00,  ...,  9.6381e-01,
       -2.5446e+00, -1.1104e+00],
      [-1.6940e+00,  2.4029e-01,  1.0767e+00,  ..., -4.1322e-01,
        4.2692e-01,  1.1715e+00],
      ...,
      [-9.4724e-01, -2.7286e-01,  4.2115e-01,  ...,  3.7616e-01,
        2.9657e-01,  7.9576e-01],
      [-1.1355e-01, -1.8284e+00,  5.9923e-01,  ...,  6.6290e-01,
        1.4958e-01,  5.7003e-01],
      [-1.2426e+00,  1.0952e+00,  9.8004e-01,  ...,  1.6550e+00,
       -4.1721e-01, -1.5737e+00]]],

    [[[-2.5502e+00, -2.4241e+00, -5.6781e-01,  ...,  7.3550e-01,
        2.7306e+00,  2.3187e-01],
      [-1.4555e+00,  1.6208e+00, -6.5569e-01,  ..., -4.5564e-01,
        1.2228e-01, -1.2036e-01],
      [-1.6754e+00,  1.3842e+00, -1.4357e+00,  ...,  4.5124e-01,
       -3.4033e-01,  1.1951e+00],
      ...,
      [ 1.1263e+00,  1.0141e+00, -5.4882e-01,  ..., -1.3509e+00,
       -1.7057e-02, -9.8708e-01],
      [ 1.5114e+00,  8.3234e-01,  2.6397e-01,  ..., -1.8911e+00,
       -9.7779e-01, -2.9526e-01],
      [-3.5018e-02, -1.7900e-02, -1.0779e-01,  ..., -1.6781e+00,
       -1.1053e+00, -1.3945e+00]],

     [[-2.4887e+00, -2.5109e+00, -2.3583e-01,  ...,  7.7854e-01,
        2.5594e+00,  5.0108e-01],
      [-1.2788e+00,  1.3141e+00, -4.9137e-01,  ..., -5.3539e-01,
       -3.3578e-04,  1.2102e-01],
      [-1.6249e+00,  1.4436e+00, -1.1583e+00,  ...,  5.4817e-01,
       -3.2341e-01,  1.0544e+00],
      ...,
      [ 1.4997e+00,  8.0902e-01, -7.4345e-01,  ..., -1.4459e+00,
        2.4938e-01, -1.0819e+00],
      [ 1.3192e+00,  8.8820e-01,  2.6871e-01,  ..., -1.6320e+00,
       -1.1183e+00, -2.4170e-01],
      [-1.2274e-01, -1.8346e-01, -4.6851e-01,  ..., -1.9324e+00,
       -1.4013e+00, -1.1599e+00]],

     [[-2.6008e+00, -2.4953e+00, -3.1804e-01,  ...,  6.1436e-01,
        2.7267e+00,  2.9878e-01],
      [-1.2539e+00,  1.3729e+00, -4.8603e-01,  ..., -6.0826e-01,
        1.0540e-01, -2.0047e-01],
      [-1.6904e+00,  1.1609e+00, -1.2040e+00,  ...,  6.5796e-01,
       -1.7179e-01,  1.3064e+00],
      ...,
      [ 1.4611e+00,  1.0485e+00, -7.6063e-01,  ..., -1.4945e+00,
        1.0611e-01, -1.1416e+00],
      [ 1.5249e+00,  8.1096e-01,  2.9682e-01,  ..., -1.6567e+00,
       -1.2007e+00, -2.3147e-01],
      [-2.2091e-01,  9.0052e-02, -4.3451e-01,  ..., -1.7489e+00,
       -1.1571e+00, -9.9585e-01]],

     ...,

     [[-2.6546e+00, -2.2700e+00, -4.4524e-01,  ...,  3.6463e-01,
        3.0417e+00,  5.6671e-01],
      [-1.4011e+00,  1.7222e+00, -5.2218e-01,  ..., -5.9744e-01,
        1.2535e-01, -2.9419e-01],
      [-1.6770e+00,  9.9765e-01, -1.3965e+00,  ...,  3.3141e-01,
       -4.0974e-02,  1.4140e+00],
      ...,
      [ 1.2155e+00,  1.2499e+00, -6.7844e-01,  ..., -1.4157e+00,
        4.3620e-03, -8.7917e-01],
      [ 1.7722e+00,  6.6028e-01,  1.2669e-01,  ..., -1.5781e+00,
       -1.2310e+00, -2.3653e-01],
      [-1.5084e-01,  2.0007e-01, -1.7730e-01,  ..., -1.5123e+00,
       -1.2505e+00, -1.3376e+00]],

     [[-2.8202e+00, -2.0736e+00, -6.1635e-01,  ...,  5.0996e-01,
        2.9691e+00,  2.4014e-01],
      [-1.5698e+00,  1.5092e+00, -6.3197e-01,  ..., -5.5759e-01,
        2.0227e-01,  4.7546e-02],
      [-1.7259e+00,  9.7447e-01, -1.2060e+00,  ...,  4.3823e-01,
       -2.9090e-01,  1.2330e+00],
      ...,
      [ 1.0943e+00,  1.3985e+00, -5.4110e-01,  ..., -1.2570e+00,
       -1.2158e-02, -9.1076e-01],
      [ 1.6390e+00,  9.1825e-01,  2.5502e-01,  ..., -1.8521e+00,
       -1.2553e+00, -2.6770e-01],
      [-3.1239e-01,  4.2653e-01, -3.4742e-01,  ..., -1.6335e+00,
       -9.8791e-01, -1.2960e+00]],

     [[-2.5978e+00, -2.1904e+00, -6.3893e-01,  ...,  6.7533e-01,
        3.0959e+00,  1.9615e-01],
      [-1.5242e+00,  1.8759e+00, -5.9848e-01,  ..., -2.8841e-01,
        4.3010e-01, -3.2935e-01],
      [-1.5945e+00,  1.0576e+00, -1.5061e+00,  ...,  3.1413e-01,
       -2.0028e-01,  1.3712e+00],
      ...,
      [ 1.1991e+00,  1.4466e+00, -6.1770e-01,  ..., -1.2508e+00,
        2.8221e-01, -9.3919e-01],
      [ 1.2299e+00,  8.4930e-01,  1.0351e-01,  ..., -1.6968e+00,
       -9.2566e-01, -2.2154e-01],
      [-1.1786e-01,  9.8225e-02, -1.9706e-01,  ..., -1.9332e+00,
       -9.1589e-01, -1.3163e+00]]]], device='cuda:0',
   grad_fn=<ViewBackward>), tensor([[32, 32]], device='cuda:0'), tensor([0], device='cuda:0'), tensor([[[[[[ 0.0391,  0.0078],
        [ 0.0703,  0.0078],
        [ 0.1016,  0.0078],
        [ 0.1328,  0.0078]]],

      [[[ 0.0391,  0.0259],
        [ 0.0703,  0.0439],
        [ 0.1016,  0.0619],
        [ 0.1328,  0.0800]]],

      [[[ 0.0259,  0.0391],
        [ 0.0439,  0.0703],
        [ 0.0619,  0.1016],
        [ 0.0800,  0.1328]]],

      ...,

      [[[ 0.0078, -0.0234],
        [ 0.0078, -0.0547],
        [ 0.0078, -0.0859],
        [ 0.0078, -0.1172]]],

      [[[ 0.0259, -0.0234],
        [ 0.0439, -0.0547],
        [ 0.0619, -0.0859],
        [ 0.0800, -0.1172]]],

      [[[ 0.0391, -0.0102],
        [ 0.0703, -0.0283],
        [ 0.1016, -0.0463],
        [ 0.1328, -0.0644]]]],

     [[[[ 0.0547,  0.0078],
        [ 0.0859,  0.0078],
        [ 0.1172,  0.0078],
        [ 0.1484,  0.0078]]],

      [[[ 0.0547,  0.0259],
        [ 0.0859,  0.0439],
        [ 0.1172,  0.0619],
        [ 0.1484,  0.0800]]],

      [[[ 0.0415,  0.0391],
        [ 0.0595,  0.0703],
        [ 0.0776,  0.1016],
        [ 0.0956,  0.1328]]],

      ...,

      [[[ 0.0234, -0.0234],
        [ 0.0234, -0.0547],
        [ 0.0234, -0.0859],
        [ 0.0234, -0.1172]]],

      [[[ 0.0415, -0.0234],
        [ 0.0595, -0.0547],
        [ 0.0776, -0.0859],
        [ 0.0956, -0.1172]]],

      [[[ 0.0547, -0.0102],
        [ 0.0859, -0.0283],
        [ 0.1172, -0.0463],
        [ 0.1484, -0.0644]]]],

     [[[[ 0.0703,  0.0078],
        [ 0.1016,  0.0078],
        [ 0.1328,  0.0078],
        [ 0.1641,  0.0078]]],

      [[[ 0.0703,  0.0259],
        [ 0.1016,  0.0439],
        [ 0.1328,  0.0619],
        [ 0.1641,  0.0800]]],

      [[[ 0.0571,  0.0391],
        [ 0.0751,  0.0703],
        [ 0.0932,  0.1016],
        [ 0.1112,  0.1328]]],

      ...,

      [[[ 0.0391, -0.0234],
        [ 0.0391, -0.0547],
        [ 0.0391, -0.0859],
        [ 0.0391, -0.1172]]],

      [[[ 0.0571, -0.0234],
        [ 0.0751, -0.0547],
        [ 0.0932, -0.0859],
        [ 0.1112, -0.1172]]],

      [[[ 0.0703, -0.0102],
        [ 0.1016, -0.0283],
        [ 0.1328, -0.0463],
        [ 0.1641, -0.0644]]]],

     ...,

     [[[[ 0.8750,  0.9688],
        [ 0.9062,  0.9688],
        [ 0.9375,  0.9688],
        [ 0.9688,  0.9688]]],

      [[[ 0.8750,  0.9868],
        [ 0.9062,  1.0048],
        [ 0.9375,  1.0229],
        [ 0.9688,  1.0409]]],

      [[[ 0.8618,  1.0000],
        [ 0.8798,  1.0312],
        [ 0.8979,  1.0625],
        [ 0.9159,  1.0938]]],

      ...,

      [[[ 0.8438,  0.9375],
        [ 0.8438,  0.9062],
        [ 0.8438,  0.8750],
        [ 0.8438,  0.8438]]],

      [[[ 0.8618,  0.9375],
        [ 0.8798,  0.9062],
        [ 0.8979,  0.8750],
        [ 0.9159,  0.8438]]],

      [[[ 0.8750,  0.9507],
        [ 0.9062,  0.9327],
        [ 0.9375,  0.9146],
        [ 0.9688,  0.8966]]]],

     [[[[ 0.9375,  0.9688],
        [ 0.9688,  0.9688],
        [ 1.0000,  0.9688],
        [ 1.0312,  0.9688]]],

      [[[ 0.9375,  0.9868],
        [ 0.9688,  1.0048],
        [ 1.0000,  1.0229],
        [ 1.0312,  1.0409]]],

      [[[ 0.9243,  1.0000],
        [ 0.9423,  1.0312],
        [ 0.9604,  1.0625],
        [ 0.9784,  1.0938]]],

      ...,

      [[[ 0.9062,  0.9375],
        [ 0.9062,  0.9062],
        [ 0.9062,  0.8750],
        [ 0.9062,  0.8438]]],

      [[[ 0.9243,  0.9375],
        [ 0.9423,  0.9062],
        [ 0.9604,  0.8750],
        [ 0.9784,  0.8438]]],

      [[[ 0.9375,  0.9507],
        [ 0.9688,  0.9327],
        [ 1.0000,  0.9146],
        [ 1.0312,  0.8966]]]],

     [[[[ 1.0000,  0.9688],
        [ 1.0312,  0.9688],
        [ 1.0625,  0.9688],
        [ 1.0938,  0.9688]]],

      [[[ 1.0000,  0.9868],
        [ 1.0312,  1.0048],
        [ 1.0625,  1.0229],
        [ 1.0938,  1.0409]]],

      [[[ 0.9868,  1.0000],
        [ 1.0048,  1.0312],
        [ 1.0229,  1.0625],
        [ 1.0409,  1.0938]]],

      ...,

      [[[ 0.9688,  0.9375],
        [ 0.9688,  0.9062],
        [ 0.9688,  0.8750],
        [ 0.9688,  0.8438]]],

      [[[ 0.9868,  0.9375],
        [ 1.0048,  0.9062],
        [ 1.0229,  0.8750],
        [ 1.0409,  0.8438]]],

      [[[ 1.0000,  0.9507],
        [ 1.0312,  0.9327],
        [ 1.0625,  0.9146],
        [ 1.0938,  0.8966]]]]],

    [[[[[ 0.0391,  0.0078],
        [ 0.0703,  0.0078],
        [ 0.1016,  0.0078],
        [ 0.1328,  0.0078]]],

      [[[ 0.0391,  0.0259],
        [ 0.0703,  0.0439],
        [ 0.1016,  0.0619],
        [ 0.1328,  0.0800]]],

      [[[ 0.0259,  0.0391],
        [ 0.0439,  0.0703],
        [ 0.0619,  0.1016],
        [ 0.0800,  0.1328]]],

      ...,

      [[[ 0.0078, -0.0234],
        [ 0.0078, -0.0547],
        [ 0.0078, -0.0859],
        [ 0.0078, -0.1172]]],

      [[[ 0.0259, -0.0234],
        [ 0.0439, -0.0547],
        [ 0.0619, -0.0859],
        [ 0.0800, -0.1172]]],

      [[[ 0.0391, -0.0102],
        [ 0.0703, -0.0283],
        [ 0.1016, -0.0463],
        [ 0.1328, -0.0644]]]],

     [[[[ 0.0547,  0.0078],
        [ 0.0859,  0.0078],
        [ 0.1172,  0.0078],
        [ 0.1484,  0.0078]]],

      [[[ 0.0547,  0.0259],
        [ 0.0859,  0.0439],
        [ 0.1172,  0.0619],
        [ 0.1484,  0.0800]]],

      [[[ 0.0415,  0.0391],
        [ 0.0595,  0.0703],
        [ 0.0776,  0.1016],
        [ 0.0956,  0.1328]]],

      ...,

      [[[ 0.0234, -0.0234],
        [ 0.0234, -0.0547],
        [ 0.0234, -0.0859],
        [ 0.0234, -0.1172]]],

      [[[ 0.0415, -0.0234],
        [ 0.0595, -0.0547],
        [ 0.0776, -0.0859],
        [ 0.0956, -0.1172]]],

      [[[ 0.0547, -0.0102],
        [ 0.0859, -0.0283],
        [ 0.1172, -0.0463],
        [ 0.1484, -0.0644]]]],

     [[[[ 0.0703,  0.0078],
        [ 0.1016,  0.0078],
        [ 0.1328,  0.0078],
        [ 0.1641,  0.0078]]],

      [[[ 0.0703,  0.0259],
        [ 0.1016,  0.0439],
        [ 0.1328,  0.0619],
        [ 0.1641,  0.0800]]],

      [[[ 0.0571,  0.0391],
        [ 0.0751,  0.0703],
        [ 0.0932,  0.1016],
        [ 0.1112,  0.1328]]],

      ...,

      [[[ 0.0391, -0.0234],
        [ 0.0391, -0.0547],
        [ 0.0391, -0.0859],
        [ 0.0391, -0.1172]]],

      [[[ 0.0571, -0.0234],
        [ 0.0751, -0.0547],
        [ 0.0932, -0.0859],
        [ 0.1112, -0.1172]]],

      [[[ 0.0703, -0.0102],
        [ 0.1016, -0.0283],
        [ 0.1328, -0.0463],
        [ 0.1641, -0.0644]]]],

     ...,

     [[[[ 0.8750,  0.9688],
        [ 0.9062,  0.9688],
        [ 0.9375,  0.9688],
        [ 0.9688,  0.9688]]],

      [[[ 0.8750,  0.9868],
        [ 0.9062,  1.0048],
        [ 0.9375,  1.0229],
        [ 0.9688,  1.0409]]],

      [[[ 0.8618,  1.0000],
        [ 0.8798,  1.0312],
        [ 0.8979,  1.0625],
        [ 0.9159,  1.0938]]],

      ...,

      [[[ 0.8438,  0.9375],
        [ 0.8438,  0.9062],
        [ 0.8438,  0.8750],
        [ 0.8438,  0.8438]]],

      [[[ 0.8618,  0.9375],
        [ 0.8798,  0.9062],
        [ 0.8979,  0.8750],
        [ 0.9159,  0.8438]]],

      [[[ 0.8750,  0.9507],
        [ 0.9062,  0.9327],
        [ 0.9375,  0.9146],
        [ 0.9688,  0.8966]]]],

     [[[[ 0.9375,  0.9688],
        [ 0.9688,  0.9688],
        [ 1.0000,  0.9688],
        [ 1.0312,  0.9688]]],

      [[[ 0.9375,  0.9868],
        [ 0.9688,  1.0048],
        [ 1.0000,  1.0229],
        [ 1.0312,  1.0409]]],

      [[[ 0.9243,  1.0000],
        [ 0.9423,  1.0312],
        [ 0.9604,  1.0625],
        [ 0.9784,  1.0938]]],

      ...,

      [[[ 0.9062,  0.9375],
        [ 0.9062,  0.9062],
        [ 0.9062,  0.8750],
        [ 0.9062,  0.8438]]],

      [[[ 0.9243,  0.9375],
        [ 0.9423,  0.9062],
        [ 0.9604,  0.8750],
        [ 0.9784,  0.8438]]],

      [[[ 0.9375,  0.9507],
        [ 0.9688,  0.9327],
        [ 1.0000,  0.9146],
        [ 1.0312,  0.8966]]]],

     [[[[ 1.0000,  0.9688],
        [ 1.0312,  0.9688],
        [ 1.0625,  0.9688],
        [ 1.0938,  0.9688]]],

      [[[ 1.0000,  0.9868],
        [ 1.0312,  1.0048],
        [ 1.0625,  1.0229],
        [ 1.0938,  1.0409]]],

      [[[ 0.9868,  1.0000],
        [ 1.0048,  1.0312],
        [ 1.0229,  1.0625],
        [ 1.0409,  1.0938]]],

      ...,

      [[[ 0.9688,  0.9375],
        [ 0.9688,  0.9062],
        [ 0.9688,  0.8750],
        [ 0.9688,  0.8438]]],

      [[[ 0.9868,  0.9375],
        [ 1.0048,  0.9062],
        [ 1.0229,  0.8750],
        [ 1.0409,  0.8438]]],

      [[[ 1.0000,  0.9507],
        [ 1.0312,  0.9327],
        [ 1.0625,  0.9146],
        [ 1.0938,  0.8966]]]]]], device='cuda:0', grad_fn=<AddBackward0>), tensor([[[[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     ...,

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]]],

    [[[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     ...,

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]],

     [[[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      ...,

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]],

      [[0.2500, 0.2500, 0.2500, 0.2500]]]]], device='cuda:0',
   grad_fn=<ViewBackward>), tensor([[[ 1.4704e-07,  2.0442e-07, -2.3773e-07,  ..., -1.2448e-07,
       1.5151e-07,  1.1875e-07],
     [ 2.7538e-07,  9.7752e-08, -4.0921e-07,  ..., -3.8392e-07,
       9.4188e-08,  1.8300e-07],
     [ 3.1790e-07,  5.3305e-08, -4.0360e-07,  ..., -4.8290e-07,
       3.0333e-08,  1.9147e-07],
     ...,
     [-3.5902e-06, -2.6383e-06,  1.1648e-06,  ...,  2.3170e-06,
      -6.1133e-06, -1.5203e-06],
     [-4.8687e-06, -2.9234e-06,  2.6226e-06,  ...,  2.4621e-06,
      -5.5553e-06, -1.1254e-06],
     [-4.2980e-06, -2.4518e-06,  3.1164e-06,  ...,  3.7315e-06,
      -2.3795e-06,  1.8520e-06]],

    [[ 9.2248e-08,  7.7889e-08, -4.6520e-08,  ...,  4.6973e-08,
      -8.7686e-08,  7.9339e-08],
     [ 1.6331e-07,  1.5263e-07, -3.9625e-08,  ...,  6.1208e-08,
      -3.2945e-08,  1.4610e-07],
     [ 2.0937e-07,  9.7642e-08, -1.2317e-08,  ...,  2.2829e-08,
      -2.6568e-08,  1.4188e-07],
     ...,
     [ 1.3758e-06,  1.7925e-06, -8.3217e-06,  ...,  1.5411e-06,
       2.5807e-06,  2.2825e-06],
     [ 1.5971e-06, -1.0762e-06, -6.9236e-06,  ...,  1.7843e-06,
       1.3317e-07,  2.9574e-06],
     [-2.5151e-06, -1.7165e-06, -3.6710e-06,  ...,  1.7461e-06,
       2.2823e-06,  3.1695e-06]]], device='cuda:0'), 64

Process finished with exit code 1

这个问题困扰我很久了,是否只能在linux系统上进行编译,或者说windows上编译也可有别的解决办法?非常感谢!!!