daita-technologies / ai-tools

AI-based tools for the DAITA platform.
http://app.daita.tech
GNU Affero General Public License v3.0
1 stars 0 forks source link

Bump torchvision from 0.13.0+cpu to 0.14.0 #93

Closed dependabot[bot] closed 1 year ago

dependabot[bot] commented 2 years ago

Bumps torchvision from 0.13.0+cpu to 0.14.0.

Release notes

Sourced from torchvision's releases.

TorchVision 0.14, including new model registration API, new models, weights, augmentations, and more

Highlights

[BETA] New Model Registration API

Following up on the multi-weight support API that was released on the previous version, we have added a new model registration API to help users retrieve models and weights. There are now 4 new methods under the torchvision.models module: get_model, get_model_weights, get_weight, and list_models. Here are examples of how we can use them:

import torchvision
from torchvision.models import get_model, get_model_weights, list_models

max_params = 5000000

tiny_models = [] for model_name in list_models(module=torchvision.models): weights_enum = get_model_weights(model_name) if len([w for w in weights_enum if w.meta["num_params"] <= max_params]) > 0: tiny_models.append(model_name)

print(tiny_models)

['mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mobilenet_v2', ...]

model = get_model(tiny_models[0], weights="DEFAULT") print(sum(x.numel() for x in model.state_dict().values()))

2239188

As of now, this API is still beta and there might be changes in the future in order to improve its usability based on your feedback.

New Architecture and Model Variants

Classification Models

We’ve added the Swin Transformer V2 architecture along with pre-trained weights for its tiny/small/base variants. In addition, we have added support for the MaxViT transformer. Here is an example on how to use the models:

import torch
from torchvision.models import *

image = torch.rand(1, 3, 224, 224) model = swin_v2_t(weights="DEFAULT").eval()

model = maxvit_t(weights="DEFAULT").eval()

prediction = model(image) </tr></table>

... (truncated)

Commits


Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
pcaversaccio commented 1 year ago

@dependabot recreate

dependabot[bot] commented 1 year ago

Superseded by #107.