hello, I tried to test self-train weight using vit base, and here is following errors:
Traceback (most recent call last):
File "test.py", line 70, in
num_query)
File "/home/pengyuzhou/workspace/TransReID/processor/processor.py", line 162, in do_inference
feat = model(img, cam_label=camids, view_label=target_view)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/make_model.py", line 310, in forward
features = self.base(x, cam_label=cam_label, view_label=view_label)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 414, in forward
x = self.forward_features(x, cam_label, view_label)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 402, in forward_features
x = blk(x)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 190, in forward
x = x + self.drop_path(self.mlp(self.norm2(x)))
RuntimeError: CUDA error: device-side assert triggered
hello, I tried to test self-train weight using vit base, and here is following errors:
Traceback (most recent call last): File "test.py", line 70, in
num_query)
File "/home/pengyuzhou/workspace/TransReID/processor/processor.py", line 162, in do_inference
feat = model(img, cam_label=camids, view_label=target_view)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/make_model.py", line 310, in forward
features = self.base(x, cam_label=cam_label, view_label=view_label)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 414, in forward
x = self.forward_features(x, cam_label, view_label)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 402, in forward_features
x = blk(x)
File "/home/pengyuzhou/miniconda3/envs/transreid/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/pengyuzhou/workspace/TransReID/model/backbones/vit_pytorch.py", line 190, in forward
x = x + self.drop_path(self.mlp(self.norm2(x)))
RuntimeError: CUDA error: device-side assert triggered
and here is the training configure file:
vit_base.yml MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/pengyuzhou/.cache/torch/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'off' IF_WITH_CENTER: 'no' NAME: 'transformer' NO_MARGIN: True DEVICE_ID: ('1') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16]
INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]
DATASETS: NAMES: ('dukemtmc') ROOT_DIR: ('/home/pengyuzhou/workspace/TransReID/data')
DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8
SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 120 BASE_LR: 0.008 IMS_PER_BATCH: 256 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 9 LOG_PERIOD: 50 EVAL_PERIOD: 120 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2
TEST: EVAL: True IMS_PER_BATCH: 128 RE_RANKING: False WEIGHT: 'output.pt' NECK_FEAT: 'before' FEAT_NORM: 'yes'
OUTPUT_DIR: '/home/pengyuzhou/workspace/TransReID/logs'
here is test configure file:
vit_transreid.yml MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/pengyuzhou/.cache/torch/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'off' IF_WITH_CENTER: 'no' NAME: 'transformer' NO_MARGIN: True DEVICE_ID: ('3') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16] SIE_CAMERA: True SIE_COE: 3.0 JPM: True RE_ARRANGE: True
INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]
DATASETS: NAMES: ('dukemtmc') ROOT_DIR: ('/home/pengyuzhou/workspace/TransReID/data')
DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8
SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 120 BASE_LR: 0.008 IMS_PER_BATCH: 256 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 120 LOG_PERIOD: 50 EVAL_PERIOD: 120 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2
TEST: EVAL: True IMS_PER_BATCH: 1 RE_RANKING: False WEIGHT: '/home/pengyuzhou/workspace/TransReID/logs/transformer_27.pth' NECK_FEAT: 'before' FEAT_NORM: 'yes'
OUTPUT_DIR: /home/pengyuzhou/workspace/TransReID/logs/duke_vit_transreid'
How to solve this? Many thanks.