daniel-kukiela / nmt-chatbot

NMT Chatbot
GNU General Public License v3.0
384 stars 212 forks source link

inference.py fails #40

Closed spiderwisp closed 6 years ago

spiderwisp commented 6 years ago

Perhaps I somehow have my training files in the wrong location? After training my model and running inference.py I get the following error.

`Starting interactive mode (first response will take a while):

hello Traceback (most recent call last): File "inference.py", line 277, in answers = process_questions(question)[0] File "inference.py", line 238, in process_questions answers_list = inference_helper(prepared_questions) File "inference.py", line 174, in start_inference return inference_helper(question) File "inference.py", line 167, in inference_helper = lambda question: do_inference(question, *inference_object) File "inference.py", line 91, in do_inference loaded_infer_model = nmt.inference.model_helper.load_model(infer_model.model, flags.ckpt, sess, "infer") File "/home/science/tf-demo/models/nmt-chatbot/nmt/nmt/model_helper.py", line 465, in load_model model.saver.restore(session, ckpt) File "/home/science/tf-demo/tensorflow-dev/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1682, in restore raise ValueError("Can't load save_path when it is None.") ValueError: Can't load save_path when it is None.`

daniel-kukiela commented 6 years ago

Did you move that over filesystem (path changed)? What do you mean by after training my model? How many records in corpus (training set), and how many steps in training?

spiderwisp commented 6 years ago

Sorry about that, after executing train.py is what I should have said.

I am using your sample records for training and all default parameters in settings.py. I wish I could elaborate more but I'm very new to tensorflow and python.

daniel-kukiela commented 6 years ago

If you run train.py you should see something like: global step 263100 lr 0.001 step-time 2.31s wps 1.90K ppl 74.88 gN 11.67 bleu 0.00 Tell me that global step please.

spiderwisp commented 6 years ago

This seems to be the root of my problem perhaps.

This is the output from train.py it seems to be failing.

`# Job id 0

Loading hparams from /home/science/tf-demo/models/nmt-chatbot/model/hparams

saving hparams to /home/science/tf-demo/models/nmt-chatbot/model/hparams saving hparams to /home/science/tf-demo/models/nmt-chatbot/model/best_bleu/hparams attention=scaled_luong attention_architecture=standard batch_size=128 beam_width=10 best_bleu=0 best_bleu_dir=/home/science/tf-demo/models/nmt-chatbot/model/best_bleu check_special_token=True colocate_gradients_with_ops=True decay_factor=1.0 decay_steps=10000 dev_prefix=/home/science/tf-demo/models/nmt-chatbot/data/tst2012 dropout=0.2 encoder_type=bi eos= epoch_step=0 forget_bias=1.0 infer_batch_size=32 init_op=uniform init_weight=0.1 learning_rate=0.001 learning_rate_decay_scheme= length_penalty_weight=1.0 log_device_placement=False max_gradient_norm=5.0 max_train=0 metrics=['bleu'] num_buckets=5 num_embeddings_partitions=0 num_gpus=1 num_layers=2 num_residual_layers=0 num_train_steps=500000 num_translations_per_input=10 num_units=512 optimizer=adam out_dir=/home/science/tf-demo/models/nmt-chatbot/model output_attention=True override_loaded_hparams=True pass_hidden_state=True random_seed=None residual=False share_vocab=False sos=<s> source_reverse=False src=from src_max_len=50 src_max_len_infer=None src_vocab_file=/home/science/tf-demo/models/nmt-chatbot/data/vocab.from src_vocab_size=15003 start_decay_step=0 steps_per_external_eval=None steps_per_stats=100 subword_option= test_prefix=/home/science/tf-demo/models/nmt-chatbot/data/tst2013 tgt=to tgt_max_len=50 tgt_max_len_infer=None tgt_vocab_file=/home/science/tf-demo/models/nmt-chatbot/data/vocab.to tgt_vocab_size=15003 time_major=True train_prefix=/home/science/tf-demo/models/nmt-chatbot/data/train unit_type=lstm vocab_prefix=/home/science/tf-demo/models/nmt-chatbot/data/vocab warmup_scheme=t2t warmup_steps=0

creating train graph ...

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 learning_rate=0.001, warmup_steps=0, warmup_scheme=t2t decay_scheme=, start_decay_step=0, decay_steps 10000, decay_factor 1

Trainable variables

embeddings/encoder/embedding_encoder:0, (15003, 512), embeddings/decoder/embedding_decoder:0, (15003, 512), dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003), /device:GPU:0

creating eval graph ...

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0

Trainable variables

embeddings/encoder/embedding_encoder:0, (15003, 512), embeddings/decoder/embedding_decoder:0, (15003, 512), dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003), /device:GPU:0

creating infer graph ...

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0

Trainable variables

embeddings/encoder/embedding_encoder:0, (15003, 512), embeddings/decoder/embedding_decoder:0, (15003, 512), dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003),

log_file=/home/science/tf-demo/models/nmt-chatbot/model/log_1519670076

2018-02-26 18:34:36.090546: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA Killed`

daniel-kukiela commented 6 years ago

Looks like it's killed for some reason, but no further info here. I'm not sure why. Maybe you were running out of RAM? Maybe look at syslog.

spiderwisp commented 6 years ago

Thanks. I'll do some more digging and post back here with the results.

spiderwisp commented 6 years ago

Ok so I upgraded the box with more RAM and reboot and it gets me much further, but now aborts

`2018-02-26 19:00:30.235705: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA created train model with fresh parameters, time 16.37s created infer model with fresh parameters, time 5.69s

86

src: yeah , when they use texture it just makes it grosser
ref: Creamy is one of those words that belongs as far from sex as possible .
nmt: bounce EQ EQ parole parole parole TALK Klopp TALK TALK TALK spices spices spices streets streets streets streets streets streets streets streets

created eval model with fresh parameters, time 4.98s eval dev: perplexity 16152.77, time 21s, Mon Feb 26 19:01:23 2018. eval test: perplexity 16152.77, time 16s, Mon Feb 26 19:01:40 2018. 2018-02-26 19:01:43.591896: W tensorflow/core/kernels/lookup_util.cc:362] Table trying to initialize from file /home/science/tf-demo/models/nmt-chatbot/data/vocab.to is already initialized. 2018-02-26 19:01:43.593025: W tensorflow/core/kernels/lookup_util.cc:362] Table trying to initialize from file /home/science/tf-demo/models/nmt-chatbot/data/vocab.to is already initialized. 2018-02-26 19:01:43.593982: W tensorflow/core/kernels/lookup_util.cc:362] Table trying to initialize from file /home/science/tf-demo/models/nmt-chatbot/data/vocab.from is already initialized. created infer model with fresh parameters, time 3.01s

Start step 0, lr 0.001, Mon Feb 26 19:01:43 2018

Init train iterator, skipping 0 elements

terminate called after throwing an instance of 'std::bad_alloc' what(): std::bad_alloc Aborted (core dumped)`

daniel-kukiela commented 6 years ago

How much RAM now in that machine? bad_alloc might mean still not sufficient RAM, or some RAM issues.

spiderwisp commented 6 years ago

So I upgraded again to a box with 16GB RAM and 4 CPUs which rectified the above problems.

So now my model is training and this is the latest output global step 100 lr 0.001 step-time 21.34s wps 0.28K ppl 1197.55 gN 30.43 bleu 0.00

However, when I try to enter input when running inference.py I'm presented with the following error:

Starting interactive mode (first response will take a while)

test
2018-02-26 23:19:43.794421: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
Traceback (most recent call last):
  File "inference.py", line 277, in <module>
    answers = process_questions(question)[0]
  File "inference.py", line 238, in process_questions
    answers_list = inference_helper(prepared_questions)
  File "inference.py", line 174, in start_inference
    return inference_helper(question)
  File "inference.py", line 167, in <lambda>
    inference_helper = lambda question: do_inference(question, *inference_object)
  File "inference.py", line 91, in do_inference
    loaded_infer_model = nmt.inference.model_helper.load_model(infer_model.model, flags.ckpt, sess, "infer")
  File "/home/science/nmt-chatbot/nmt/nmt/model_helper.py", line 465, in load_model
    model.saver.restore(session, ckpt)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 1682, in restore
    raise ValueError("Can't load save_path when it is None.")
ValueError: Can't load save_path when it is None.
science@machine-learning-and-s-6vcpu-16gb-nyc1-01:~/nmt-chatbot$

Is this because the model hasn't trained enough?

daniel-kukiela commented 6 years ago

Yes, you have to wait for first checkpoint to be saved. You'll know that's that moment, because you'll see information on your console. There will be some evaluation as well. To train a model you should wait for at least two full epochs (info will be printed to a console as well).

spiderwisp commented 6 years ago

Thank you. I went through some of the tutorials again and I think after 5,000 steps this checkpoint and output_dev file is generated?

This is my current output

global step 100 lr 0.001 step-time 21.34s wps 0.28K ppl 1197.55 gN 30.43 bleu 0.00 global step 200 lr 0.001 step-time 20.92s wps 0.29K ppl 530.19 gN 13.81 bleu 0.00 global step 300 lr 0.001 step-time 20.00s wps 0.30K ppl 318.84 gN 11.21 bleu 0.00 global step 400 lr 0.001 step-time 20.37s wps 0.30K ppl 256.20 gN 10.01 bleu 0.00

daniel-kukiela commented 6 years ago

Yes, every 5k steps, but also at epoch end. You can calculate how many steps for an epoch by dividing number of entries in corpus (training set) by batch size (128 by default, configurable in setup/settings.py).

spiderwisp commented 6 years ago

Thank you for all your help (do you guys have a donate link?)

If anyone had similar problems to mine, the root of my issues turned out to be package problems between python versions.

Also, I had to reinstall tensorflow after installing the packages from requirements.txt. Not sure why.

daniel-kukiela commented 6 years ago

I'm glad you solved your issues.

And link you were asking for: https://pythonprogramming.net/support/

abhishekkumar9807 commented 6 years ago

Instead of global step I am getting step is that a prblem? Python 3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 03:37:03) [MSC v.1900 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information.

RESTART: C:\Users\kumar\Desktop\finalyear_project\nmt-chatbot-master\train.py

Training model...

Epoch: 1, steps per epoch: 7947, epoch ends at 7947 steps, learning rate: 0.001 - training

Job id 0

Devices visible to TensorFlow: [_DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456)]

Vocab file data/vocab.bpe.from exists

using source vocab for target saving hparams to model/hparams saving hparams to model/best_bleu\hparams attention=scaled_luong attention_architecture=standard avg_ckpts=False batch_size=128 beam_width=20 best_bleu=0 best_bleu_dir=model/best_bleu check_special_token=True colocate_gradients_with_ops=True decay_scheme= dev_prefix=data/tst2012.bpe dropout=0.2 embed_prefix=None encoder_type=bi eos= epoch_step=0 forget_bias=1.0 infer_batch_size=32 infer_mode=greedy init_op=uniform init_weight=0.1 language_model=False learning_rate=0.001 length_penalty_weight=1.0 log_device_placement=False max_gradient_norm=5.0 max_train=0 metrics=['bleu'] num_buckets=5 num_dec_emb_partitions=0 num_decoder_layers=2 num_decoder_residual_layers=0 num_embeddings_partitions=0 num_enc_emb_partitions=0 num_encoder_layers=2 num_encoder_residual_layers=0 num_gpus=1 num_inter_threads=0 num_intra_threads=0 num_keep_ckpts=5 num_sampled_softmax=0 num_train_steps=7947 num_translations_per_input=20 num_units=512 optimizer=adam out_dir=model/ output_attention=True override_loaded_hparams=True pass_hidden_state=True random_seed=None residual=False sampling_temperature=0.0 share_vocab=True sos= src=from src_embed_file= src_max_len=50 src_max_len_infer=None src_vocab_file=data/vocab.bpe.from src_vocab_size=15003 steps_per_external_eval=None steps_per_stats=100 subword_option=spm test_prefix=data/tst2013.bpe tgt=to tgt_embed_file= tgt_max_len=50 tgt_max_len_infer=None tgt_vocab_file=data/vocab.bpe.from tgt_vocab_size=15003 time_major=True train_prefix=data/train.bpe unit_type=lstm use_char_encode=False vocab_prefix=data/vocab.bpe warmup_scheme=t2t warmup_steps=0

Use the same embedding for source and target

Creating train graph ...

Build a basic encoder

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 learning_rate=0.001, warmup_steps=0, warmup_scheme=t2t decay_scheme=, start_decay_step=7947, decay_steps 0, decay_factor 1

Trainable variables

Format: , , <(soft) device placement> embeddings/embedding_share:0, (15003, 512), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003), /device:GPU:0

Use the same embedding for source and target

Creating eval graph ...

Build a basic encoder

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0

Trainable variables

Format: , , <(soft) device placement> embeddings/embedding_share:0, (15003, 512), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003), /device:GPU:0

Use the same embedding for source and target

Creating infer graph ...

Build a basic encoder

num_bi_layers = 1, num_bi_residual_layers=0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 0 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 cell 1 LSTM, forget_bias=1 DeviceWrapper, device=/gpu:0 decoder: infer_mode=greedybeam_width=20, length_penalty=1.000000

Trainable variables

Format: , , <(soft) device placement> embeddings/embedding_share:0, (15003, 512), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/fw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/encoder/bidirectional_rnn/bw/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1024, 512), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/kernel:0, (1536, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/kernel:0, (1024, 2048), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/basic_lstm_cell/bias:0, (2048,), /device:GPU:0 dynamic_seq2seq/decoder/attention/luong_attention/attention_g:0, (), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (1536, 512), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (512, 15003),

log_file=model/log_1538452213

created train model with fresh parameters, time 2.17s created infer model with fresh parameters, time 0.54s

44

src: ▁< met a ▁name = " br ows er - err ors - ur l " ▁content = " https : / / ap i . github . com / _ p riv ate / br ows er / err ors " >
ref: ▁< met a ▁name = " br ows er - err ors - ur l " ▁content = " https : / / ap i . github . com / _ p riv ate / br ows er / err ors " >
nmt: til cruel cruelGHGHGHGHཻཻཻholholholhol tons tons tons tons tons tons tonsaughaughaughaughaughaughaughaughaughaugh Key Key Key Key Key Key Key Key Key tier tier tier tier tier tier tierpadpadpadpad Af Af bri bri bri Afoman Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af

created eval model with fresh parameters, time 0.60s eval dev: perplexity 18138.46, time 24s, Tue Oct 2 09:20:45 2018. eval test: perplexity 18254.26, time 24s, Tue Oct 2 09:21:10 2018. created infer model with fresh parameters, time 0.55s

Start step 0, lr 0.001, Tue Oct 2 09:21:11 2018

Init train iterator, skipping 0 elements

step 100 lr 0.001 step-time 25.89s wps 0.23K ppl 1151.96 gN 27.21 bleu 0.00, Tue Oct 2 10:04:21 2018