Describe the issue:
Unable to print logistic regression score as a float instead get an empty array:
ArrayChunkBytes8 B8 BShape()()Dask graph1 chunks in 32 graph layersData typefloat64 numpy.ndarray | Array | Chunk | Bytes | 8 B | 8 B | Shape | () | () | Dask graph | 1 chunks in 32 graph layers | Data type | float64 numpy.ndarray
8 B | 8 B
() | ()
1 chunks in 32 graph layers
float64 numpy.ndarray
Minimal Complete Verifiable Example:
# Put your MCVE code here
```from dask_ml.linear_model import LogisticRegression
from dask_glm.datasets import make_classification
X, y = make_classification()
lr = LogisticRegression()
lr.fit(X, y)
lr.score(X, y)
**Anything else we need to know?**:
**Environment**:
- Dask version:'2023.4.1'
- Python version:3.9
- Operating System:Mac OS
- Install method (conda, pip, source): Conda
Describe the issue: Unable to print logistic regression score as a float instead get an empty array:
ArrayChunkBytes8 B8 BShape()()Dask graph1 chunks in 32 graph layersData typefloat64 numpy.ndarray | Array | Chunk | Bytes | 8 B | 8 B | Shape | () | () | Dask graph | 1 chunks in 32 graph layers | Data type | float64 numpy.ndarray
8 B | 8 B () | () 1 chunks in 32 graph layers float64 numpy.ndarray
Minimal Complete Verifiable Example: