Closed chrishavlin closed 5 months ago
hmm, can't actually reproduce this, going to close for now.
import numpy as np
import xarray as xr
import yt_xarray
import yt_xarray.sample_data
import yt
ds = yt_xarray.sample_data.load_random_xr_data(
fields = {'field1': ('altitude', 'latitude', 'longitude')},
dims = {'latitude': (-90,90,30),
'longitude': (0, 360, 40),
# 'longitude': (-180,180, 40),
'altitude': (0, 2000, 20)})
lons = ds.longitude.to_numpy()
lons = np.repeat(lons[np.newaxis, :], len(ds.latitude), axis=0)
lons = np.repeat(lons[np.newaxis,:, :], len(ds.altitude), axis=0)
lons.shape
da_lons = xr.DataArray(lons, dims=('altitude', 'latitude', 'longitude'))
ds['lonvals'] = da_lons
ds_yt = ds.yt.load_grid()
fname = 'lonvals'
slc = yt.SlicePlot(ds_yt, 'altitude', fname, window_size=(4,2))
slc.set_log(fname, False)
loading a dataset with longitude from 0, 360 causes problems... yt expects -180, 180 and yt_xarray should do some normalizing without copying the data.