import_mlflow_version_from_managed_folder and import_mlflow_version_from_path take an optional binary_classification_threshold parameter. In bidimensional classification models, it allows the user to override its 0.5 value.
evaluatetakes an optional use_optimal_threshold parameter, set by default to False. It allows the user to evaluate according to the previously computed optimal threshold at training, depending on the metric set in the saved model.
for example:
settings = saved_model.get_settings()
settings.prediction_metrics_settings['thresholdOptimizationMetric'] = 'ACCURACY'
settings.save()
# ...
model_version = saved_model.import_mlflow_version_from_path("v0", model_dir, binary_classification_threshold=0.2)
# ...
# will evaluate using the optimal threshold according to accuracy
model_version.evaluate("DATASET", use_optimal_threshold=True)
# will evaluate using a threshold set to 0.2
model_version.evaluate("DATASET")
To be completed by the according PR on DIP
import_mlflow_version_from_managed_folder
andimport_mlflow_version_from_path
take an optionalbinary_classification_threshold
parameter. In bidimensional classification models, it allows the user to override its 0.5 value.evaluate
takes an optionaluse_optimal_threshold
parameter, set by default to False. It allows the user to evaluate according to the previously computed optimal threshold at training, depending on the metric set in the saved model.for example: