datawhalechina / self-llm

《开源大模型食用指南》基于Linux环境快速部署开源大模型,更适合中国宝宝的部署教程
Apache License 2.0
9.83k stars 1.15k forks source link

xtuner 微调报错,求指点 #260

Open zhanbaohang opened 2 months ago

zhanbaohang commented 2 months ago

微调的时候出现这个问题,请问大佬们如何解决

(base) root@91bd5febc58b:/data/nlp_translate# CUDA_VISIBLE_DEVICES=2,3 NPROC_PER_NODE=2 xtuner train /data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py --deepspeed deepspeed_zero2 09/20 09:09:17 - mmengine - WARNING - Use random port: 29768 /opt/conda/lib/python3.8/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: TorchScript support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the torch.compile optimizer instead. from torch.distributed.optim import \ [2024-09-20 09:09:22,245] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) [WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH [WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.4 [WARNING] using untested triton version (3.0.0), only 1.0.0 is known to be compatible /opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:49: FutureWarning: torch.cuda.amp.custom_fwd(args...) is deprecated. Please use torch.amp.custom_fwd(args..., device_type='cuda') instead. def forward(ctx, input, weight, bias=None): /opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:67: FutureWarning: torch.cuda.amp.custom_bwd(args...) is deprecated. Please use torch.amp.custom_bwd(args..., device_type='cuda') instead. def backward(ctx, grad_output):

:219: RuntimeWarning: scipy._lib.messagestream.MessageStream size changed, may indicate binary incompatibility. Expected 56 from C header, got 64 from PyObject 09/20 09:09:26 - mmengine - WARNING - WARNING: command error: 'partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)'! 09/20 09:09:26 - mmengine - WARNING - Arguments received: ['xtuner', 'train', '/data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax: xtuner MODE MODE_ARGS ARGS Where MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco') MODE_ARG (optional) is the argument for specific mode ARGS (optional) are the arguments for specific command Some usages for xtuner commands: (See more by using -h for specific command!) 1. List all predefined configs: xtuner list-cfg 2. Copy a predefined config to a given path: xtuner copy-cfg $CONFIG $SAVE_FILE 3-1. Fine-tune LLMs by a single GPU: xtuner train $CONFIG 3-2. Fine-tune LLMs by multiple GPUs: NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS 4-1. Convert the pth model to HuggingFace's model: xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL 4-2. Merge the HuggingFace's adapter to the pretrained base model: xtuner convert merge $LLM $ADAPTER $SAVE_PATH xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip 4-3. Split HuggingFace's LLM to the smallest sharded one: xtuner convert split $LLM $SAVE_PATH 5-1. Chat with LLMs with HuggingFace's model and adapter: xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE 5-2. Chat with VLMs with HuggingFace's model and LLaVA: xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE 6-1. Preprocess arxiv dataset: xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES 6-2. Preprocess refcoco dataset: xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH 7-1. Log processed dataset: xtuner log-dataset $CONFIG 7-2. Verify the correctness of the config file for the custom dataset: xtuner check-custom-dataset $CONFIG 8. MMBench evaluation: xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH 9. Refcoco evaluation: xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH 10. List all dataset formats which are supported in XTuner Run special commands: xtuner help xtuner version GitHub: https://github.com/InternLM/xtuner
KMnO4-zx commented 2 months ago

可以去xtuner的官方仓库提交issue哦,哪里有负责解答~