(base) root@91bd5febc58b:/data/nlp_translate# CUDA_VISIBLE_DEVICES=2,3 NPROC_PER_NODE=2 xtuner train /data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py --deepspeed deepspeed_zero2
09/20 09:09:17 - mmengine - WARNING - Use random port: 29768
/opt/conda/lib/python3.8/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: TorchScript support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the torch.compile optimizer instead.
from torch.distributed.optim import \
[2024-09-20 09:09:22,245] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
[WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.4
[WARNING] using untested triton version (3.0.0), only 1.0.0 is known to be compatible
/opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:49: FutureWarning: torch.cuda.amp.custom_fwd(args...) is deprecated. Please use torch.amp.custom_fwd(args..., device_type='cuda') instead.
def forward(ctx, input, weight, bias=None):
/opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:67: FutureWarning: torch.cuda.amp.custom_bwd(args...) is deprecated. Please use torch.amp.custom_bwd(args..., device_type='cuda') instead.
def backward(ctx, grad_output):
:219: RuntimeWarning: scipy._lib.messagestream.MessageStream size changed, may indicate binary incompatibility. Expected 56 from C header, got 64 from PyObject
09/20 09:09:26 - mmengine - WARNING - WARNING: command error: 'partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)'!
09/20 09:09:26 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', '/data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:
xtuner MODE MODE_ARGS ARGS
Where MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
MODE_ARG (optional) is the argument for specific mode
ARGS (optional) are the arguments for specific command
Some usages for xtuner commands: (See more by using -h for specific command!)
1. List all predefined configs:
xtuner list-cfg
2. Copy a predefined config to a given path:
xtuner copy-cfg $CONFIG $SAVE_FILE
3-1. Fine-tune LLMs by a single GPU:
xtuner train $CONFIG
3-2. Fine-tune LLMs by multiple GPUs:
NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
4-1. Convert the pth model to HuggingFace's model:
xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
4-2. Merge the HuggingFace's adapter to the pretrained base model:
xtuner convert merge $LLM $ADAPTER $SAVE_PATH
xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
4-3. Split HuggingFace's LLM to the smallest sharded one:
xtuner convert split $LLM $SAVE_PATH
5-1. Chat with LLMs with HuggingFace's model and adapter:
xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
5-2. Chat with VLMs with HuggingFace's model and LLaVA:
xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
6-1. Preprocess arxiv dataset:
xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
6-2. Preprocess refcoco dataset:
xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
7-1. Log processed dataset:
xtuner log-dataset $CONFIG
7-2. Verify the correctness of the config file for the custom dataset:
xtuner check-custom-dataset $CONFIG
8. MMBench evaluation:
xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
9. Refcoco evaluation:
xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
10. List all dataset formats which are supported in XTuner
Run special commands:
xtuner help
xtuner version
GitHub: https://github.com/InternLM/xtuner
微调的时候出现这个问题,请问大佬们如何解决
(base) root@91bd5febc58b:/data/nlp_translate# CUDA_VISIBLE_DEVICES=2,3 NPROC_PER_NODE=2 xtuner train /data/nlp_translate/train_for_internlm/internlm2_5_chat_7b_qlora.py --deepspeed deepspeed_zero2 09/20 09:09:17 - mmengine - WARNING - Use random port: 29768 /opt/conda/lib/python3.8/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning:
TorchScript
support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using thetorch.compile
optimizer instead. from torch.distributed.optim import \ [2024-09-20 09:09:22,245] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) [WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH [WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.4 [WARNING] using untested triton version (3.0.0), only 1.0.0 is known to be compatible /opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:49: FutureWarning:torch.cuda.amp.custom_fwd(args...)
is deprecated. Please usetorch.amp.custom_fwd(args..., device_type='cuda')
instead. def forward(ctx, input, weight, bias=None): /opt/conda/lib/python3.8/site-packages/deepspeed/runtime/zero/linear.py:67: FutureWarning:torch.cuda.amp.custom_bwd(args...)
is deprecated. Please usetorch.amp.custom_bwd(args..., device_type='cuda')
instead. def backward(ctx, grad_output):