Closed mattjj closed 10 years ago
This approach works for library subHMMs, but not for library HSMMs.
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-20-ccb7c38c9502> in <module>()
6 parallel_profile='lhsmm',
7 **params)
----> 8 lhsmm.fit(nonwhite_data)
/home/alexbw/Code/pyhsmm/mixins.py in fit(self, X, y)
231 self._pre_fit()
232 self._setup()
--> 233 self._data_setup()
234 for itr in self.ixrange(self.n_iter):
235 self._pre_resample(itr)
/home/alexbw/Code/pyhsmm/mixins.py in _data_setup(self)
512 def _data_setup(self):
513 if self.parallel:
--> 514 all_data, all_aBl = split_data(self.X, self, self.n_engines)
515 if self.y == None:
516 split_labels = [None]*self.n_engines
/home/alexbw/Code/pyhsmm_library_models/util.pyc in split_data(big_data_array, model, num_parts)
71 else:
72 model.add_data(data=big_data_array)
---> 73 big_aBl_array = model.states_list.pop().aBls[0]
74 with open(filepath,'w') as outfile:
75 cPickle.dump(big_aBl_array,outfile,protocol=-1)
AttributeError: 'LibraryHSMMStatesIntegerNegativeBinomialVariant' object has no attribute 'aBls'
LibraryHSMMStatesIntegerNegativeBinomialVariant
is a subclass of the LHSMM.
Very small change in 41c4e6a67648b3d778857fe4d4a215dded09bec3 fixes it.
Close again?
Close
On Fri, Dec 20, 2013 at 2:39 PM, Matthew Johnson notifications@github.comwrote:
Close again?
— Reply to this email directly or view it on GitHubhttps://github.com/dattalab/pyhsmm-library-models/issues/51#issuecomment-31035773 .
With a fixed library and a fixed overall set of data, we wastefully recompute iid likelihoods for each partitioning of data to engines (i.e. to add_data calls). We should fix that!
Unfortunately, we may have to do this outside
add_data
, since we need to know where the slices we're passing toadd_data
come from. So we need a global function in library_models and/or library_subhmm_models:or something like that...