Exception ignored in: <bound method _DataLoaderIter.del of <torch.utils.data.dataloader._DataLoaderIter object at 0x7f7aa2ec8198>>
Traceback (most recent call last):
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 349, in del
self._shutdown_workers()
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 328, in _shutdown_workers
self.worker_result_queue.get()
File "/usr/lib/python3.5/multiprocessing/queues.py", line 345, in get
return ForkingPickler.loads(res)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/multiprocessing/reductions.py", line 70, in rebuild_storage_fd
fd = df.detach()
File "/usr/lib/python3.5/multiprocessing/resource_sharer.py", line 58, in detach
return reduction.recv_handle(conn)
File "/usr/lib/python3.5/multiprocessing/reduction.py", line 181, in recv_handle
return recvfds(s, 1)[0]
File "/usr/lib/python3.5/multiprocessing/reduction.py", line 152, in recvfds
msg, ancdata, flags, addr = sock.recvmsg(1, socket.CMSG_LEN(bytes_size))
ConnectionResetError: [Errno 104] Connection reset by peer
Traceback (most recent call last):
File "ndf8conv3k4.py", line 173, in
trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001)
File "ndf8conv3k4.py", line 116, in trainNet
outputs = net(inputs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply
raise output
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker
output = module(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, kwargs)
File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf8k3.py", line 60, in forward
output = self.regressor(x)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, **kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [7 x 524288], m2: [1048576 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249
Traceback (most recent call last):
File "ndf12k3.py", line 173, in
trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001)
File "ndf12k3.py", line 116, in trainNet
outputs = net(inputs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply
raise output
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker
output = module(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, kwargs)
File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf12k3.py", line 60, in forward
output = self.regressor(x)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, **kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [7 x 786432], m2: [1572864 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249
leichen@gpu-compute2$
Traceback (most recent call last):
File "ndf12k3.py", line 173, in
trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001)
File "ndf12k3.py", line 116, in trainNet
outputs = net(inputs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply
raise output
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker
output = module(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, kwargs)
File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf12k3.py", line 60, in forward
output = self.regressor(x)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, **kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [7 x 786432], m2: [1572864 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249
batch_size= 50 epochs= 200 learning_rate= 0.001
Exception ignored in: <bound method _DataLoaderIter.del of <torch.utils.data.dataloader._DataLoaderIter object at 0x7f7aa2ec8198>> Traceback (most recent call last): File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 349, in del self._shutdown_workers() File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 328, in _shutdown_workers self.worker_result_queue.get() File "/usr/lib/python3.5/multiprocessing/queues.py", line 345, in get return ForkingPickler.loads(res) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/multiprocessing/reductions.py", line 70, in rebuild_storage_fd fd = df.detach() File "/usr/lib/python3.5/multiprocessing/resource_sharer.py", line 58, in detach return reduction.recv_handle(conn) File "/usr/lib/python3.5/multiprocessing/reduction.py", line 181, in recv_handle return recvfds(s, 1)[0] File "/usr/lib/python3.5/multiprocessing/reduction.py", line 152, in recvfds msg, ancdata, flags, addr = sock.recvmsg(1, socket.CMSG_LEN(bytes_size)) ConnectionResetError: [Errno 104] Connection reset by peer Traceback (most recent call last): File "ndf8conv3k4.py", line 173, in
trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001)
File "ndf8conv3k4.py", line 116, in trainNet
outputs = net(inputs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply
raise output
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker
output = module(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, kwargs)
File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf8k3.py", line 60, in forward
output = self.regressor(x)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, *kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(input, **kwargs)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [7 x 524288], m2: [1048576 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249