dearleiii / PIRM-2018-SISR-Challenge

Super Resolution
https://www.pirm2018.org/PIRM-SR.html
2 stars 0 forks source link

Size mismatch #12

Open dearleiii opened 6 years ago

dearleiii commented 6 years ago

batch_size= 50 epochs= 200 learning_rate= 0.001

Exception ignored in: <bound method _DataLoaderIter.del of <torch.utils.data.dataloader._DataLoaderIter object at 0x7f7aa2ec8198>> Traceback (most recent call last): File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 349, in del self._shutdown_workers() File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/utils/data/dataloader.py", line 328, in _shutdown_workers self.worker_result_queue.get() File "/usr/lib/python3.5/multiprocessing/queues.py", line 345, in get return ForkingPickler.loads(res) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/multiprocessing/reductions.py", line 70, in rebuild_storage_fd fd = df.detach() File "/usr/lib/python3.5/multiprocessing/resource_sharer.py", line 58, in detach return reduction.recv_handle(conn) File "/usr/lib/python3.5/multiprocessing/reduction.py", line 181, in recv_handle return recvfds(s, 1)[0] File "/usr/lib/python3.5/multiprocessing/reduction.py", line 152, in recvfds msg, ancdata, flags, addr = sock.recvmsg(1, socket.CMSG_LEN(bytes_size)) ConnectionResetError: [Errno 104] Connection reset by peer Traceback (most recent call last): File "ndf8conv3k4.py", line 173, in trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001) File "ndf8conv3k4.py", line 116, in trainNet outputs = net(inputs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply raise output File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker output = module(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, kwargs) File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf8k3.py", line 60, in forward output = self.regressor(x) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, **kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward return F.linear(input, self.weight, self.bias) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear return torch.addmm(bias, input, weight.t()) RuntimeError: size mismatch, m1: [7 x 524288], m2: [1048576 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249

dearleiii commented 6 years ago

(module): APXM_ndf12k3( (main): Sequential( (0): Conv2d(3, 12, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.2, inplace) (2): Conv2d(12, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (3): LeakyReLU(negative_slope=0.2, inplace) (4): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (5): LeakyReLU(negative_slope=0.2, inplace) ) (regressor): Sequential( (0): Linear(in_features=1572864, out_features=256, bias=True) (1): LeakyReLU(negative_slope=0.01) (2): Linear(in_features=256, out_features=1, bias=True) ) ) ) ===== HYPERPARAMETERS ===== batch_size= 50 epochs= 200 learning_rate= 0.001

Traceback (most recent call last): File "ndf12k3.py", line 173, in trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001) File "ndf12k3.py", line 116, in trainNet outputs = net(inputs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply raise output File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker output = module(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, kwargs) File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf12k3.py", line 60, in forward output = self.regressor(x) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, **kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward return F.linear(input, self.weight, self.bias) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear return torch.addmm(bias, input, weight.t()) RuntimeError: size mismatch, m1: [7 x 786432], m2: [1572864 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249 leichen@gpu-compute2$

dearleiii commented 6 years ago

Traceback (most recent call last): File "ndf12k3.py", line 173, in trainNet(approximator, batch_size = 50, n_epochs = 200, learning_rate = 0.001) File "ndf12k3.py", line 116, in trainNet outputs = net(inputs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 114, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/data_parallel.py", line 124, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 65, in parallel_apply raise output File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/parallel/parallel_apply.py", line 41, in _worker output = module(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, kwargs) File "/home/home2/leichen/SuperResolutor/Approx_discrim/apxm_ndf12k3.py", line 60, in forward output = self.regressor(x) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, *kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(input, **kwargs) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/modules/linear.py", line 55, in forward return F.linear(input, self.weight, self.bias) File "/home/home2/leichen/.local/lib/python3.5/site-packages/torch/nn/functional.py", line 992, in linear return torch.addmm(bias, input, weight.t()) RuntimeError: size mismatch, m1: [7 x 786432], m2: [1572864 x 256] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249