Open martinenkoEduard opened 1 year ago
Same doubt here
hi guys, have you found out the requirements yet?
I used the requirements from ultralytics/yolov5 and added some missing packages:
# YOLOv5 requirements
# Usage: pip install -r requirements.txt
# Base ------------------------------------------------------------------------
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.32.0
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.64.0
tensorboard
# ultralytics>=8.2.34 # https://ultralytics.com
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet
# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export ----------------------------------------------------------------------
# coremltools>=6.0 # CoreML export
# onnx>=1.10.0 # ONNX export
# onnx-simplifier>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn<=1.1.2 # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Deploy ----------------------------------------------------------------------
# setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0
# Extras ----------------------------------------------------------------------
ipython # interactive notebook
cython
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
I also made an environment.yaml file, in case you want to install using conda:
# reasons you might want to use `environment.yaml` instead of `requirements.txt`:
# - pip installs packages in a loop, without ensuring dependencies across all packages
# are fulfilled simultaneously, but conda achieves proper dependency control across
# all packages
# - conda allows for installing packages without requiring certain compilers or
# libraries to be available in the system, since it installs precompiled binaries
name: myenv
channels:
- pytorch
- conda-forge
- defaults
# it is strongly recommended to specify versions of packages installed through conda
# to avoid situation when version-unspecified packages install their latest major
# versions which can sometimes break things
# current approach below keeps the dependencies in the same major versions across all
# users, but allows for different minor and patch versions of packages where backwards
# compatibility is usually guaranteed
dependencies:
- python=3.10
- matplotlib=3.*
- numpy=1.*
- opencv=4.*
- pillow=10.*
- pytorch=2.*
- psutil
- pyyaml=5.*
- requests=2.*
- scipy=1.*
- pytorch
- torchvision
- tqdm=4.*
- pandas=1*
- seaborn=0.*
- tensorboard
- pip>=23
- pip:
- thop
# ------ For Evaluation ----- #
- cython
- ipython
What are the requirements?