deepfakes / faceswap-playground

User dedicated repo for the faceswap project
306 stars 194 forks source link

The utilization: CPU 100, GPU 20 #300

Closed gblue1223 closed 5 years ago

gblue1223 commented 5 years ago

I've searched and did what they said about GPU usage, but it seems still have a problem.

I installed CUDA 10.0(cuda_10.0.130_411.31_win10) and MiniConda seems installed CUDNN 7.6.0(MiniConda3\pkgs\cudnn-7.6.0-cuda10.0_0)

After the installation, I've extracted images, and tried the train but the utilization rate is not what I expected. The app use CPU 100% and use GPU about 20%.

What should I tweak?

Expected behavior

100% usage of GPU. Less then 100% of CPU.

Actual behavior

CPU 100%, GPU 20%.

Steps to reproduce

Start the train.

Other relevant information

=============== Pip Packages =============== absl-py==0.7.1 astor==0.7.1 certifi==2019.6.16 cloudpickle==1.2.1 cycler==0.10.0 cytoolz==0.9.0.1 dask==2.1.0 decorator==4.4.0 fastcluster==1.1.25 ffmpy==0.2.2 gast==0.2.2 grpcio==1.16.1 h5py==2.9.0 imageio==2.5.0 imageio-ffmpeg==0.3.0 joblib==0.13.2 Keras==2.2.4 Keras-Applications==1.0.8 Keras-Preprocessing==1.1.0 kiwisolver==1.1.0 Markdown==3.1.1 matplotlib==2.2.2 mkl-fft==1.0.12 mkl-random==1.0.2 mkl-service==2.0.2 mock==3.0.5 networkx==2.3 numpy==1.16.2 nvidia-ml-py3==7.352.0 olefile==0.46 pathlib==1.0.1 Pillow==6.0.0 protobuf==3.8.0 psutil==5.6.3 pyparsing==2.4.0 pyreadline==2.1 python-dateutil==2.8.0 pytz==2019.1 PyWavelets==1.0.3 pywin32==223 PyYAML==5.1.1 scikit-image==0.15.0 scikit-learn==0.21.2 scipy==1.2.1 six==1.12.0 tensorboard==1.13.1 tensorflow==1.13.1 tensorflow-estimator==1.13.0 termcolor==1.1.0 toolz==0.9.0 toposort==1.5 tornado==6.0.3 tqdm==4.32.1 Werkzeug==0.15.4 wincertstore==0.2

============== Conda Packages ==============

packages in environment at C:\Users\greenblue\MiniConda3\envs\faceswap:

#

Name Version Build Channel

_tflow_select 2.1.0 gpu
absl-py 0.7.1 py36_0
astor 0.7.1 py36_0
blas 1.0 mkl
ca-certificates 2019.5.15 0
certifi 2019.6.16 py36_0
cloudpickle 1.2.1 py_0
cudatoolkit 10.0.130 0
cudnn 7.6.0 cuda10.0_0
cycler 0.10.0 py36h009560c_0
cytoolz 0.9.0.1 py36hfa6e2cd_1
dask-core 2.1.0 py_0
decorator 4.4.0 py36_1
fastcluster 1.1.25 py36h830ac7b_1000 conda-forge ffmpeg 4.1.3 h6538335_0 conda-forge ffmpy 0.2.2 pypi_0 pypi freetype 2.9.1 ha9979f8_1
gast 0.2.2 py36_0
grpcio 1.16.1 py36h351948d_1
h5py 2.9.0 py36h5e291fa_0
hdf5 1.10.4 h7ebc959_0
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha66f8fd_1
imageio 2.5.0 py36_0
imageio-ffmpeg 0.3.0 py_0 conda-forge intel-openmp 2019.4 245
joblib 0.13.2 py36_0
jpeg 9c hfa6e2cd_1001 conda-forge keras 2.2.4 0
keras-applications 1.0.8 py_0
keras-base 2.2.4 py36_0
keras-preprocessing 1.1.0 py_1
kiwisolver 1.1.0 py36ha925a31_0
libblas 3.8.0 8_mkl conda-forge libcblas 3.8.0 8_mkl conda-forge liblapack 3.8.0 8_mkl conda-forge liblapacke 3.8.0 8_mkl conda-forge libmklml 2019.0.3 0
libpng 1.6.37 h7602738_0 conda-forge libprotobuf 3.8.0 h7bd577a_0
libtiff 4.0.10 h6512ee2_1003 conda-forge libwebp 1.0.2 hfa6e2cd_2 conda-forge lz4-c 1.8.3 he025d50_1001 conda-forge markdown 3.1.1 py36_0
matplotlib 2.2.2 py36had4c4a9_2
mkl 2019.4 245
mkl-service 2.0.2 py36he774522_0
mkl_fft 1.0.12 py36h14836fe_0
mkl_random 1.0.2 py36h343c172_0
mock 3.0.5 py36_0
networkx 2.3 py_0
numpy 1.16.2 py36h19fb1c0_0
numpy-base 1.16.2 py36hc3f5095_0
nvidia-ml-py3 7.352.0 pypi_0 pypi olefile 0.46 py36_0
opencv 4.1.0 py36hb4945ee_5 conda-forge openssl 1.1.1c he774522_1
pathlib 1.0.1 py36_1
pillow 6.0.0 py36hdc69c19_0
pip 19.1.1 py36_0
protobuf 3.8.0 py36h33f27b4_0
psutil 5.6.3 py36he774522_0
pyparsing 2.4.0 py_0
pyqt 5.9.2 py36h6538335_2
pyreadline 2.1 py36_1
python 3.6.8 h9f7ef89_7
python-dateutil 2.8.0 py36_0
pytz 2019.1 py_0
pywavelets 1.0.3 py36h8c2d366_1
pywin32 223 py36hfa6e2cd_1
pyyaml 5.1.1 py36he774522_0
qt 5.9.7 hc6833c9_1 conda-forge scikit-image 0.15.0 py36ha925a31_0
scikit-learn 0.21.2 py36h6288b17_0
scipy 1.2.1 py36h29ff71c_0
setuptools 41.0.1 py36_0
sip 4.19.8 py36h6538335_0
six 1.12.0 py36_0
sqlite 3.28.0 he774522_0
tensorboard 1.13.1 py36h33f27b4_0
tensorflow 1.13.1 gpu_py36h9006a92_0
tensorflow-base 1.13.1 gpu_py36h871c8ca_0
tensorflow-estimator 1.13.0 py_0
tensorflow-gpu 1.13.1 h0d30ee6_0
termcolor 1.1.0 py36_1
tk 8.6.8 hfa6e2cd_0
toolz 0.9.0 py36_0
toposort 1.5 py_3 conda-forge tornado 6.0.3 py36he774522_0
tqdm 4.32.1 py_0
vc 14.1 h0510ff6_4
vs2015_runtime 14.15.26706 h3a45250_4
werkzeug 0.15.4 py_0
wheel 0.33.4 py36_0
wincertstore 0.2 py36h7fe50ca_0
xz 5.2.4 h2fa13f4_1001 conda-forge yaml 0.1.7 hc54c509_2
zlib 1.2.11 h2fa13f4_1004 conda-forge zstd 1.4.0 hd8a0e53_0 conda-forge

gblue1223 commented 5 years ago

I've changed cuDNN library to 7.5.1.10 and the GPU utilization rate has increased to 70%. But CPU utilization rate is still 100%.

EDIT: I terminated the training for a while and resumed it few minutes ago. Guess what.. GPU utilization rate almost idle. CPU 100%. What's wrong???

torzdf commented 5 years ago

Windows does not report GPU usage properly for Machine Learning. It is tuned to graphics performance. Use Nvidia SMI.

gblue1223 commented 5 years ago

Wow, sounds wear me out. Damn Windows... Thanks @torzdf !!!