Closed joaoreiis closed 5 years ago
05/13/2019 14:29:37 MainProcess MainThread _base replace_config INFO Using configuration saved in state file 05/13/2019 14:29:37 MainProcess MainThread _base new_session_id DEBUG 2 05/13/2019 14:29:37 MainProcess MainThread _base create_new_session DEBUG Creating new session. id: 2 05/13/2019 14:29:37 MainProcess MainThread _base __init__ DEBUG Initialized State: 05/13/2019 14:29:37 MainProcess MainThread _base name DEBUG model name: 'original' 05/13/2019 14:29:37 MainProcess MainThread _base rename_legacy DEBUG Renaming legacy files 05/13/2019 14:29:37 MainProcess MainThread _base name DEBUG model name: 'original' 05/13/2019 14:29:37 MainProcess MainThread _base rename_legacy DEBUG No legacy files to rename 05/13/2019 14:29:37 MainProcess MainThread _base load_state_info DEBUG Loading Input Shape from State file 05/13/2019 14:29:37 MainProcess MainThread _base load_state_info DEBUG Setting input shape from state file: (64, 64, 3) 05/13/2019 14:29:37 MainProcess MainThread original add_networks DEBUG Adding networks 05/13/2019 14:29:37 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("input_1:0", shape=(?, 8, 8, 512), dtype=float32), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:37 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("pixel_shuffler_1/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:37 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("pixel_shuffler_2/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:37 MainProcess MainThread _base add_network DEBUG network_type: 'decoder', side: 'a', network: '<keras.engine.training.Model object at 0x000002AED2AC46D8>' 05/13/2019 14:29:37 MainProcess MainThread _base name DEBUG model name: 'original' 05/13/2019 14:29:37 MainProcess MainThread _base add_network DEBUG name: 'decoder_a', filename: 'original_decoder_A.h5' 05/13/2019 14:29:37 MainProcess MainThread _base __init__ DEBUG Initializing NNMeta: (filename: 'H:\Users\joao_\faceswap\models\original_decoder_A.h5', network_type: 'decoder', side: 'a', network: <keras.engine.training.Model object at 0x000002AED2AC46D8> 05/13/2019 14:29:38 MainProcess MainThread _base __init__ DEBUG Initialized NNMeta 05/13/2019 14:29:38 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("input_2:0", shape=(?, 8, 8, 512), dtype=float32), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("pixel_shuffler_4/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("pixel_shuffler_5/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread _base add_network DEBUG network_type: 'decoder', side: 'b', network: '<keras.engine.training.Model object at 0x000002AF7C94BD30>' 05/13/2019 14:29:38 MainProcess MainThread _base name DEBUG model name: 'original' 05/13/2019 14:29:38 MainProcess MainThread _base add_network DEBUG name: 'decoder_b', filename: 'original_decoder_B.h5' 05/13/2019 14:29:38 MainProcess MainThread _base __init__ DEBUG Initializing NNMeta: (filename: 'H:\Users\joao_\faceswap\models\original_decoder_B.h5', network_type: 'decoder', side: 'b', network: <keras.engine.training.Model object at 0x000002AF7C94BD30> 05/13/2019 14:29:38 MainProcess MainThread _base __init__ DEBUG Initialized NNMeta 05/13/2019 14:29:38 MainProcess MainThread nn_blocks conv DEBUG inp: Tensor("input_3:0", shape=(?, 64, 64, 3), dtype=float32), filters: 128, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks conv DEBUG inp: Tensor("leaky_re_lu_7/LeakyRelu:0", shape=(?, 32, 32, 128), dtype=float32), filters: 256, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks conv DEBUG inp: Tensor("leaky_re_lu_8/LeakyRelu:0", shape=(?, 16, 16, 256), dtype=float32), filters: 512, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks conv DEBUG inp: Tensor("leaky_re_lu_9/LeakyRelu:0", shape=(?, 8, 8, 512), dtype=float32), filters: 1024, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread nn_blocks upscale DEBUG inp: Tensor("reshape_1/Reshape:0", shape=(?, 4, 4, 1024), dtype=float32), filters: 512, kernel_size: 3, use_instance_norm: False, kwargs: {}) 05/13/2019 14:29:38 MainProcess MainThread _base add_network DEBUG network_type: 'encoder', side: 'None', network: '<keras.engine.training.Model object at 0x000002AF7DC04C50>' 05/13/2019 14:29:38 MainProcess MainThread _base name DEBUG model name: 'original' 05/13/2019 14:29:38 MainProcess MainThread _base add_network DEBUG name: 'encoder', filename: 'original_encoder.h5' 05/13/2019 14:29:38 MainProcess MainThread _base __init__ DEBUG Initializing NNMeta: (filename: 'H:\Users\joao_\faceswap\models\original_encoder.h5', network_type: 'encoder', side: 'None', network: <keras.engine.training.Model object at 0x000002AF7DC04C50> 05/13/2019 14:29:38 MainProcess MainThread _base __init__ DEBUG Initialized NNMeta 05/13/2019 14:29:38 MainProcess MainThread original add_networks DEBUG Added networks 05/13/2019 14:29:38 MainProcess MainThread _base load_models DEBUG Load model: (swapped: False) 05/13/2019 14:29:38 MainProcess MainThread _base models_exist DEBUG Pre-existing models exist: True 05/13/2019 14:29:38 MainProcess MainThread _base models_exist DEBUG Pre-existing models exist: True 05/13/2019 14:29:38 MainProcess MainThread _base map_models DEBUG Map models: (swapped: False) 05/13/2019 14:29:38 MainProcess MainThread _base map_models DEBUG Mapped models: (models_map: {'a': {'decoder': 'H:\\Users\\joao_\\faceswap\\models\\original_decoder_A.h5'}, 'b': {'decoder': 'H:\\Users\\joao_\\faceswap\\models\\original_decoder_B.h5'}}) 05/13/2019 14:29:38 MainProcess MainThread _base load DEBUG Loading model: 'H:\Users\joao_\faceswap\models\original_decoder_A.h5' 05/13/2019 14:29:39 MainProcess MainThread _base load DEBUG Loading model: 'H:\Users\joao_\faceswap\models\original_decoder_B.h5' 05/13/2019 14:29:39 MainProcess MainThread _base load DEBUG Loading model: 'H:\Users\joao_\faceswap\models\original_encoder.h5' 05/13/2019 14:29:39 MainProcess MainThread _base load WARNING Failed loading existing training data. Generating new models 05/13/2019 14:29:39 MainProcess MainThread _base load DEBUG Exception: Unable to open file (bad object header version number) 05/13/2019 14:29:39 MainProcess MainThread original build_autoencoders DEBUG Initializing model 05/13/2019 14:29:39 MainProcess MainThread original build_autoencoders DEBUG Adding Autoencoder. Side: a Traceback (most recent call last): File "H:\Users\joao_\faceswap\lib\cli.py", line 109, in execute_script process = script(arguments) File "H:\Users\joao_\faceswap\scripts\convert.py", line 45, in __init__ self.predictor = Predict(self.disk_io.load_queue, self.queue_size, arguments) File "H:\Users\joao_\faceswap\scripts\convert.py", line 406, in __init__ self.model = self.load_model() File "H:\Users\joao_\faceswap\scripts\convert.py", line 449, in load_model model = PluginLoader.get_model(trainer)(model_dir, self.args.gpus, predict=True) File "H:\Users\joao_\faceswap\plugins\train\model\original.py", line 24, in __init__ super().__init__(*args, **kwargs) File "H:\Users\joao_\faceswap\plugins\train\model\_base.py", line 90, in __init__ self.build() File "H:\Users\joao_\faceswap\plugins\train\model\_base.py", line 166, in build self.build_autoencoders() File "H:\Users\joao_\faceswap\plugins\train\model\original.py", line 46, in build_autoencoders output = decoder(self.networks["encoder"].network(inputs[0])) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\base_layer.py", line 457, in __call__ output = self.call(inputs, **kwargs) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\network.py", line 564, in call output_tensors, _, _ = self.run_internal_graph(inputs, masks) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\network.py", line 721, in run_internal_graph layer.call(computed_tensor, **kwargs)) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\keras\layers\convolutional.py", line 171, in call dilation_rate=self.dilation_rate) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\keras\backend\tensorflow_backend.py", line 3650, in conv2d data_format=tf_data_format) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 767, in convolution with ops.name_scope(name, "convolution", [input, filter]) as name: File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\ops.py", line 6023, in __enter__ g = _get_graph_from_inputs(self._values) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\ops.py", line 5664, in _get_graph_from_inputs _assert_same_graph(original_graph_element, graph_element) File "C:\Users\joao_\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\ops.py", line 5600, in _assert_same_graph original_item)) ValueError: Tensor("conv2d_9/kernel:0", shape=(5, 5, 3, 128), dtype=float32_ref) must be from the same graph as Tensor("face:0", shape=(?, 64, 64, 3), dtype=float32). ============ System Information ============ encoding: cp1252 git_branch: master git_commits: 057f715 Pin MiniConda in installer to v4.15.12 gpu_cuda: 9.0 gpu_cudnn: 7.5.0 gpu_devices: GPU_0: GeForce GTX 1050 Ti gpu_devices_active: GPU_0 gpu_driver: 385.54 gpu_vram: GPU_0: 4096MB os_machine: AMD64 os_platform: Windows-10-10.0.17763-SP0 os_release: 10 py_command: H:\Users\joao_\faceswap\faceswap.py convert -i H:/Users/joao_/faceswap/scarllet.mp4 -o H:/Users/joao_/faceswap/out -l 0.6 -m H:/Users/joao_/faceswap/models -c avg-color -sc none -M predicted -w opencv -osc 100 -g 1 -t original -L INFO -gui py_conda_version: conda 4.5.12 py_implementation: CPython py_version: 3.6.8 py_virtual_env: True sys_cores: 4 sys_processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel sys_ram: Total: 8174MB, Available: 2208MB, Used: 5965MB, Free: 2208MB =============== Pip Packages =============== absl-py==0.7.1 astor==0.7.1 certifi==2019.3.9 Click==7.0 cloudpickle==1.0.0 cmake==3.13.3 cycler==0.10.0 cytoolz==0.9.0.1 dask==1.2.2 decorator==4.4.0 dlib==19.16.99 face-recognition==1.2.3 face-recognition-models==0.3.0 ffmpy==0.2.2 gast==0.2.2 grpcio==1.16.1 h5py==2.9.0 imageio==2.5.0 imageio-ffmpeg==0.3.0 isort==4.3.17 Keras==2.2.4 Keras-Applications==1.0.7 Keras-Preprocessing==1.0.9 kiwisolver==1.1.0 Markdown==3.1 matplotlib==2.2.2 mccabe==0.6.1 mkl-fft==1.0.12 mkl-random==1.0.2 mock==2.0.0 networkx==2.3 numpy==1.16.2 nvidia-ml-py3==7.352.0 olefile==0.46 opencv-python==4.1.0.25 pathlib==1.0.1 pbr==5.1.3 Pillow==6.0.0 protobuf==3.7.1 psutil==5.6.2 pyparsing==2.4.0 pyreadline==2.1 python-dateutil==2.8.0 pytz==2019.1 PyWavelets==1.0.3 PyYAML==5.1 scikit-image==0.15.0 scikit-learn==0.20.3 scipy==1.2.1 six==1.12.0 tensorboard==1.12.2 tensorflow==1.12.0 tensorflow-estimator==1.13.0 termcolor==1.1.0 toolz==0.9.0 toposort==1.5 tornado==6.0.2 tqdm==4.31.1 Werkzeug==0.15.2 wincertstore==0.2 ============== Conda Packages ============== # packages in environment at C:\Users\joao_\MiniConda3\envs\faceswap: # # Name Version Build Channel _tflow_select 2.1.0 gpu absl-py 0.7.1 py36_0 astor 0.7.1 py36_0 blas 1.0 mkl ca-certificates 2019.1.23 0 certifi 2019.3.9 py36_0 Click 7.0 <pip> cloudpickle 1.0.0 py_0 cmake 3.13.3 <pip> cudatoolkit 9.0 1 cudnn 7.3.1 cuda9.0_0 cycler 0.10.0 py36h009560c_0 cytoolz 0.9.0.1 py36hfa6e2cd_1 dask-core 1.2.2 py_0 decorator 4.4.0 py36_1 dlib 19.16.99 <pip> face-recognition 1.2.3 <pip> face-recognition-models 0.3.0 <pip> ffmpeg 4.1.3 h6538335_0 conda-forge ffmpy 0.2.2 <pip> freetype 2.9.1 ha9979f8_1 gast 0.2.2 py36_0 grpcio 1.16.1 py36h351948d_1 h5py 2.9.0 py36h5e291fa_0 hdf5 1.10.4 h7ebc959_0 icc_rt 2019.0.0 h0cc432a_1 icu 58.2 ha66f8fd_1 imageio 2.5.0 py36_0 imageio-ffmpeg 0.3.0 <pip> intel-openmp 2019.3 203 jpeg 9b hb83a4c4_2 keras 2.2.4 0 keras-applications 1.0.7 py_0 keras-base 2.2.4 py36_0 keras-preprocessing 1.0.9 py_0 kiwisolver 1.1.0 py36ha925a31_0 libmklml 2019.0.3 0 libpng 1.6.37 h2a8f88b_0 libprotobuf 3.7.1 h7bd577a_0 libtiff 4.0.10 hb898794_2 markdown 3.1 py36_0 matplotlib 2.2.2 py36had4c4a9_2 mkl 2019.3 203 mkl_fft 1.0.12 py36h14836fe_0 mkl_random 1.0.2 py36h343c172_0 mock 2.0.0 py36h9086845_0 networkx 2.3 py_0 numpy 1.16.2 py36h19fb1c0_0 numpy-base 1.16.2 py36hc3f5095_0 nvidia-ml-py3 7.352.0 <pip> olefile 0.46 py36_0 opencv-python 4.1.0.25 <pip> openssl 1.1.1b he774522_1 pathlib 1.0.1 py36_1 pbr 5.1.3 py_0 pillow 6.0.0 py36hdc69c19_0 pip 19.1.1 py36_0 protobuf 3.7.1 py36h33f27b4_0 psutil 5.6.2 py36he774522_0 pyparsing 2.4.0 py_0 pyqt 5.9.2 py36h6538335_2 pyreadline 2.1 py36_1 python 3.6.8 h9f7ef89_7 python-dateutil 2.8.0 py36_0 pytz 2019.1 py_0 pywavelets 1.0.3 py36h8c2d366_1 pyyaml 5.1 py36he774522_0 qt 5.9.7 vc14h73c81de_0 scikit-image 0.15.0 py36ha925a31_0 scikit-learn 0.20.3 py36h343c172_0 scipy 1.2.1 py36h29ff71c_0 setuptools 41.0.1 py36_0 sip 4.19.8 py36h6538335_0 six 1.12.0 py36_0 sqlite 3.28.0 he774522_0 tensorboard 1.12.2 py36h33f27b4_0 tensorflow 1.12.0 gpu_py36ha5f9131_0 tensorflow-base 1.12.0 gpu_py36h6e53903_0 tensorflow-estimator 1.13.0 py_0 tensorflow-gpu 1.12.0 h0d30ee6_0 termcolor 1.1.0 py36_1 tk 8.6.8 hfa6e2cd_0 toolz 0.9.0 py36_0 toposort 1.5 <pip> tornado 6.0.2 py36he774522_0 tqdm 4.31.1 py36_1 vc 14.1 h0510ff6_4 vs2015_runtime 14.15.26706 h3a45250_4 werkzeug 0.15.2 py_0 wheel 0.33.2 py36_0 wincertstore 0.2 py36h7fe50ca_0 xz 5.2.4 h2fa13f4_4 yaml 0.1.7 hc54c509_2 zlib 1.2.11 h62dcd97_3 zstd 1.3.7 h508b16e_0
I would say that your model has corrupted. This is an h5py error.