Open CMakey opened 1 year ago
what's more , when i run the code python inference.py --weight work_dirs/face_umd_r100/model.pt --network r100
the result cames like this, there are only 200 numbers in all , but i don't know what to do.
-0.14197479 -0.90856093 0.2612555 2.5996816 -0.8645787 1.0984787
-1.5481728 1.1185685 1.1716927 -0.5919134 -0.86590195 0.4793761
0.20306966 0.31248182 -0.7318979 0.10985775 -0.69324315 -1.2252758
0.9595894 2.4714372 0.9033031 1.65573 1.5275675 1.9243096
0.30653664 -0.3621285 -0.22210565 -0.9324069 -3.2201917 0.4331724
0.21072745 0.7518698 0.40516305 -0.63688517 -0.50916415 0.73849624
0.39027804 0.34557724 1.4237952 0.52682006 -0.35319164 1.1468838
1.7897052 -0.08494984 -3.0109212 1.6659174 -1.9667882 -1.2440423
2.1366186 2.1304927 -0.37914786 -0.7269743 0.8108647 0.9784584
-1.6757375 1.2260991 -2.3573203 1.7145627 1.0278714 -1.3689977
-0.69652265 -1.673241 -0.23464157 0.827121 2.085239 -0.13495259
2.4772122 -1.829716 1.1441706 -1.096763 1.6096206 0.7074399
0.3498694 0.37551004 0.29052967 -1.5270598 0.6691264 -0.9401472
-1.4271096 1.0869007 -1.4407881 0.8018797 -1.486573 -0.14876139
0.39238277 0.5260103 1.1262397 1.4627178 -0.46582985 0.28019136
-1.1019486 1.5502445 -3.7200494 0.13907395 -0.77018434 1.5063859
-0.42647538 -2.7784085 -0.51739246 0.1862042 0.79934347 0.74231964
0.12219442 0.45059732 0.862764 -1.5644227 1.7897822 0.7287775
1.2232933 -0.46182632 -2.4194262 1.4597034 2.119485 0.4852753
-0.24113019 0.80735 0.15052532 0.63328546 1.7220626 -2.3073342
0.51064366 -0.97686666 -0.20707193 -1.166993 0.6556213 0.45225808
2.4424076 0.53898114 0.6369736 0.09511925 0.9471057 -1.1503799
0.08223129 -0.5421476 -0.0612626 -1.1479584 -2.5161614 1.2851589
-1.97923 0.11969204 -0.6341834 -0.3547518 0.8522022 -0.6718146
2.1875858 -0.2715869 0.68040913 -0.45416573 0.17012958 -1.8134416
-0.5063244 0.25494152 -0.29034883 -0.4156903 -2.8594334 0.10826248
0.36027417 -1.2161708 -1.5655534 1.1249104 -0.13304886 0.14267042
1.188729 0.99348867 1.0221468 -0.57966906 -1.9867332 1.4589988
1.7214968 0.8131395 -0.17921506 -0.21746238 1.1440798 -0.5321635
-1.226887 -1.1130831 0.09922308 -0.58225113 -1.8647765 0.58119416
-0.12439682 0.06047543 0.61621535 1.3933288 0.97782165 1.6939999
-2.0418587 -0.04077145 -3.745717 -0.9432432 -0.36207813 0.72862476
-0.78732896 1.5361986 1.8630766 0.4465176 0.19769527 0.63913816
1.3576422 -0.65597624 2.2250514 1.30703 -0.44994417 -2.2717416
-0.5714991 1.8127705 -0.86886215 0.03884459 0.20872341 -1.6363363
0.77186567 1.2802613 3.0081882 -0.9313274 0.9855726 0.47933003
1.1960621 -1.5032662 1.4641418 -0.63546544 -1.8390664 0.8940129
-0.37845048 -1.659115 0.6662984 -0.05085506 1.3265948 0.0377506
0.6227851 1.2222685 -0.59811807 -1.5168611 1.4611329 -3.4309669
1.7449596 -1.1654227 1.1313052 2.1832542 -0.4607211 -0.47714052
-1.187059 1.3303441 1.1067159 -1.002934 -0.8986804 -0.10682251
-1.192637 -0.36964417 -1.0398211 0.7834925 0.24426402 -0.10491683
0.15511002 -0.705989 0.792656 1.9362661 -1.7136568 -0.36898094
-2.119776 1.5569715 1.5491294 1.5076641 0.97855747 -1.9341758
-2.205656 1.9023049 1.3639154 1.7040371 1.1560448 0.19118619
1.2215725 -1.3706273 -0.3444504 0.70214367 1.3320069 -2.6555367
-1.636137 1.238437 -3.0184712 -0.38138422 -0.5404247 -0.94531363
0.04947946 1.5353955 -0.9148663 -0.27081856 0.7918925 -0.71484184
-0.37999013 1.1978077 0.29071787 -0.36307222 -0.5188514 1.2711834
-1.516248 0.64300203 0.9850636 -0.23884752 1.305709 -1.0388064
-0.4388711 1.9157523 -1.6117725 -1.0291632 -1.7321966 -3.1830566
-1.0535043 1.1002122 -1.5115194 -2.0747805 -1.3357145 -0.1989307
2.547138 -0.19410777 0.2489086 1.4534051 -1.3778976 -1.3895962
-3.3970342 0.12530693 1.7656265 -2.2455158 -1.4245323 -0.4269297
1.9038008 1.0621073 -0.63229996 -0.20192151 0.17258583 1.219417
-0.1149663 0.6173275 1.8875296 -0.56104684 -1.4668345 0.6517423
0.7670969 1.3353549 0.41950515 1.3349037 1.3841734 -0.9001517
0.0048165 -0.59564006 -0.9405832 0.76407194 -0.01644389 -1.0778792
-0.21250142 0.1299661 0.8748573 1.5036438 2.6045835 -1.4992473
-1.7407783 -1.4742312 -1.0052722 0.37579325 -0.8352497 0.10070888
-0.4795149 0.01405213 -0.2968706 1.1805524 2.5484333 3.6290069
3.5270672 -0.7222721 -1.6135048 1.5211242 -1.6163529 0.84502256
-0.24393396 -2.5434554 -2.0756862 3.1062286 1.4804682 -3.4912636
1.2259612 -0.5484494 0.68334603 0.35478243 0.01758031 -0.67679936
-1.4135786 0.79385054 -2.0789833 1.4616469 -0.5817304 -0.3193594
0.59265834 -1.8046415 -0.1574746 -0.44488838 1.5178074 -2.6413941
-0.7170679 -0.7622535 0.47194666 -0.38689828 0.71537524 0.46894506
-0.9253089 -1.8098103 0.15705091 0.6806365 -0.12298296 -0.8506894
-1.3320992 -0.09465965 0.8546478 -2.0379236 0.23210374 1.2864611
-1.115023 1.0626028 -0.8473559 -0.49522603 0.20396842 -1.7851207
0.07553623 1.7501174 0.07093978 1.2681198 0.06610481 2.231619
1.926362 1.7156997 -1.2103912 -3.2820034 0.33256155 0.58738434
0.3856504 0.5730925 -1.6300728 -1.0513625 0.46999264 0.0592112
-0.14507799 -0.04666986 1.6740463 -0.625391 -0.04774209 0.68075037
-1.716437 2.0041106 0.35566595 0.39742932 3.878968 1.9351032
-2.253918 1.6262021 0.38719636 1.764592 -0.99488777 -0.8639892
-0.85770047 0.7612162 -1.1476153 0.4605851 0.79147536 -1.4109249
-0.6360634 2.291107 0.26888803 -0.52940243 0.7351876 2.5535805
0.03425223 -0.33321762 -0.87688434 0.57761836 -1.0517218 -0.5315786
0.4163581 1.9749796 0.39105406 2.7493799 1.1646098 -0.1528221
-0.2993352 -1.1022804 1.160775 0.22939645 -0.717629 -0.5306618
1.3477471 -0.06745018 -0.9459232 0.61537963 -0.68127924 1.3017894
-1.2358617 -0.58047736 2.354986 -3.6275318 0.50789833 0.5032583
-0.86339283 -0.9664472 -1.6059818 -0.2954751 -0.06713548 0.45752537
0.4217528 -1.0154542 ]]
as a beginner of cv, i trained this model on a tesla P4 sever.
in training, i use umd dataset , and reset the parameter after copying configs.
config = edict() config.margin_list = (1.0, 0.5, 0.0) config.network = "r100" config.resume = False config.output = None config.embedding_size = 512 config.sample_rate = 1.0 config.fp16 = True config.momentum = 0.9 config.weight_decay = 5e-4 config.batch_size = 6 config.lr = 0.1 config.verbose = 2000 config.dali = False config.rec = "../_datasets_/faces_umd" config.num_classes = 10575 config.num_image = 494414 config.num_epoch = 5 config.warmup_epoch = 0 config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
the log file show the result like this:training.log and the model is here: model
when i want to use the model on few pics selected from IJBC, the result came 100%.
Time: 0.00 s. Time: 0.00 s. files: 300 batch 0 batch 1 batch 2 Time: 9.90 s. Feature Shape: (300 , 1024) . (300, 512) (300,) Finish Calculating 0 template features. Time: 0.01 s. Finish 0/1 pairs. Time: 0.00 s. +-----------+--------+--------+--------+--------+--------+--------+ | Methods | 1e-06 | 1e-05 | 0.0001 | 0.001 | 0.01 | 0.1 | +-----------+--------+--------+--------+--------+--------+--------+ | ijbc-IJBC | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | +-----------+--------+--------+--------+--------+--------+--------+``` i couldn't figure it out , and hope someone had solutions.
it seems only few position pair in this TPR@FPR test, maybe you should include more images to make test more reasonable.
what's more , when i run the code
python inference.py --weight work_dirs/face_umd_r100/model.pt --network r100
the result cames like this, there are only 200 numbers in all , but i don't know what to do.-0.14197479 -0.90856093 0.2612555 2.5996816 -0.8645787 1.0984787 -1.5481728 1.1185685 1.1716927 -0.5919134 -0.86590195 0.4793761 0.20306966 0.31248182 -0.7318979 0.10985775 -0.69324315 -1.2252758 0.9595894 2.4714372 0.9033031 1.65573 1.5275675 1.9243096 0.30653664 -0.3621285 -0.22210565 -0.9324069 -3.2201917 0.4331724 0.21072745 0.7518698 0.40516305 -0.63688517 -0.50916415 0.73849624 0.39027804 0.34557724 1.4237952 0.52682006 -0.35319164 1.1468838 1.7897052 -0.08494984 -3.0109212 1.6659174 -1.9667882 -1.2440423 2.1366186 2.1304927 -0.37914786 -0.7269743 0.8108647 0.9784584 -1.6757375 1.2260991 -2.3573203 1.7145627 1.0278714 -1.3689977 -0.69652265 -1.673241 -0.23464157 0.827121 2.085239 -0.13495259 2.4772122 -1.829716 1.1441706 -1.096763 1.6096206 0.7074399 0.3498694 0.37551004 0.29052967 -1.5270598 0.6691264 -0.9401472 -1.4271096 1.0869007 -1.4407881 0.8018797 -1.486573 -0.14876139 0.39238277 0.5260103 1.1262397 1.4627178 -0.46582985 0.28019136 -1.1019486 1.5502445 -3.7200494 0.13907395 -0.77018434 1.5063859 -0.42647538 -2.7784085 -0.51739246 0.1862042 0.79934347 0.74231964 0.12219442 0.45059732 0.862764 -1.5644227 1.7897822 0.7287775 1.2232933 -0.46182632 -2.4194262 1.4597034 2.119485 0.4852753 -0.24113019 0.80735 0.15052532 0.63328546 1.7220626 -2.3073342 0.51064366 -0.97686666 -0.20707193 -1.166993 0.6556213 0.45225808 2.4424076 0.53898114 0.6369736 0.09511925 0.9471057 -1.1503799 0.08223129 -0.5421476 -0.0612626 -1.1479584 -2.5161614 1.2851589 -1.97923 0.11969204 -0.6341834 -0.3547518 0.8522022 -0.6718146 2.1875858 -0.2715869 0.68040913 -0.45416573 0.17012958 -1.8134416 -0.5063244 0.25494152 -0.29034883 -0.4156903 -2.8594334 0.10826248 0.36027417 -1.2161708 -1.5655534 1.1249104 -0.13304886 0.14267042 1.188729 0.99348867 1.0221468 -0.57966906 -1.9867332 1.4589988 1.7214968 0.8131395 -0.17921506 -0.21746238 1.1440798 -0.5321635 -1.226887 -1.1130831 0.09922308 -0.58225113 -1.8647765 0.58119416 -0.12439682 0.06047543 0.61621535 1.3933288 0.97782165 1.6939999 -2.0418587 -0.04077145 -3.745717 -0.9432432 -0.36207813 0.72862476 -0.78732896 1.5361986 1.8630766 0.4465176 0.19769527 0.63913816 1.3576422 -0.65597624 2.2250514 1.30703 -0.44994417 -2.2717416 -0.5714991 1.8127705 -0.86886215 0.03884459 0.20872341 -1.6363363 0.77186567 1.2802613 3.0081882 -0.9313274 0.9855726 0.47933003 1.1960621 -1.5032662 1.4641418 -0.63546544 -1.8390664 0.8940129 -0.37845048 -1.659115 0.6662984 -0.05085506 1.3265948 0.0377506 0.6227851 1.2222685 -0.59811807 -1.5168611 1.4611329 -3.4309669 1.7449596 -1.1654227 1.1313052 2.1832542 -0.4607211 -0.47714052 -1.187059 1.3303441 1.1067159 -1.002934 -0.8986804 -0.10682251 -1.192637 -0.36964417 -1.0398211 0.7834925 0.24426402 -0.10491683 0.15511002 -0.705989 0.792656 1.9362661 -1.7136568 -0.36898094 -2.119776 1.5569715 1.5491294 1.5076641 0.97855747 -1.9341758 -2.205656 1.9023049 1.3639154 1.7040371 1.1560448 0.19118619 1.2215725 -1.3706273 -0.3444504 0.70214367 1.3320069 -2.6555367 -1.636137 1.238437 -3.0184712 -0.38138422 -0.5404247 -0.94531363 0.04947946 1.5353955 -0.9148663 -0.27081856 0.7918925 -0.71484184 -0.37999013 1.1978077 0.29071787 -0.36307222 -0.5188514 1.2711834 -1.516248 0.64300203 0.9850636 -0.23884752 1.305709 -1.0388064 -0.4388711 1.9157523 -1.6117725 -1.0291632 -1.7321966 -3.1830566 -1.0535043 1.1002122 -1.5115194 -2.0747805 -1.3357145 -0.1989307 2.547138 -0.19410777 0.2489086 1.4534051 -1.3778976 -1.3895962 -3.3970342 0.12530693 1.7656265 -2.2455158 -1.4245323 -0.4269297 1.9038008 1.0621073 -0.63229996 -0.20192151 0.17258583 1.219417 -0.1149663 0.6173275 1.8875296 -0.56104684 -1.4668345 0.6517423 0.7670969 1.3353549 0.41950515 1.3349037 1.3841734 -0.9001517 0.0048165 -0.59564006 -0.9405832 0.76407194 -0.01644389 -1.0778792 -0.21250142 0.1299661 0.8748573 1.5036438 2.6045835 -1.4992473 -1.7407783 -1.4742312 -1.0052722 0.37579325 -0.8352497 0.10070888 -0.4795149 0.01405213 -0.2968706 1.1805524 2.5484333 3.6290069 3.5270672 -0.7222721 -1.6135048 1.5211242 -1.6163529 0.84502256 -0.24393396 -2.5434554 -2.0756862 3.1062286 1.4804682 -3.4912636 1.2259612 -0.5484494 0.68334603 0.35478243 0.01758031 -0.67679936 -1.4135786 0.79385054 -2.0789833 1.4616469 -0.5817304 -0.3193594 0.59265834 -1.8046415 -0.1574746 -0.44488838 1.5178074 -2.6413941 -0.7170679 -0.7622535 0.47194666 -0.38689828 0.71537524 0.46894506 -0.9253089 -1.8098103 0.15705091 0.6806365 -0.12298296 -0.8506894 -1.3320992 -0.09465965 0.8546478 -2.0379236 0.23210374 1.2864611 -1.115023 1.0626028 -0.8473559 -0.49522603 0.20396842 -1.7851207 0.07553623 1.7501174 0.07093978 1.2681198 0.06610481 2.231619 1.926362 1.7156997 -1.2103912 -3.2820034 0.33256155 0.58738434 0.3856504 0.5730925 -1.6300728 -1.0513625 0.46999264 0.0592112 -0.14507799 -0.04666986 1.6740463 -0.625391 -0.04774209 0.68075037 -1.716437 2.0041106 0.35566595 0.39742932 3.878968 1.9351032 -2.253918 1.6262021 0.38719636 1.764592 -0.99488777 -0.8639892 -0.85770047 0.7612162 -1.1476153 0.4605851 0.79147536 -1.4109249 -0.6360634 2.291107 0.26888803 -0.52940243 0.7351876 2.5535805 0.03425223 -0.33321762 -0.87688434 0.57761836 -1.0517218 -0.5315786 0.4163581 1.9749796 0.39105406 2.7493799 1.1646098 -0.1528221 -0.2993352 -1.1022804 1.160775 0.22939645 -0.717629 -0.5306618 1.3477471 -0.06745018 -0.9459232 0.61537963 -0.68127924 1.3017894 -1.2358617 -0.58047736 2.354986 -3.6275318 0.50789833 0.5032583 -0.86339283 -0.9664472 -1.6059818 -0.2954751 -0.06713548 0.45752537 0.4217528 -1.0154542 ]]
you got 506 numbers here... ... the feature you pasted here is incomplete I believe, missing one line with 6 numbers
what's more , when i run the code
python inference.py --weight work_dirs/face_umd_r100/model.pt --network r100
the result cames like this, there are only 200 numbers in all , but i don't know what to do....
you got 506 numbers here... ... the feature you pasted here is incomplete I believe, missing one line with 6 numbers
thanks for u reply!! i run this command again and got 512 number, but seems different with above.
1.75900340e+00 -7.60324895e-02 1.34765577e+00 -1.08499575e+00
1.94557101e-01 -1.13492444e-01 2.86602676e-01 4.03746754e-01
6.89632058e-01 9.94994581e-01 -5.73002279e-01 5.39066076e-01
-1.46311295e+00 6.22060895e-01 1.76022995e+00 6.21085107e-01
-1.23920536e+00 -2.72208214e-01 6.30875528e-01 6.41248047e-01
-7.88332283e-01 -5.16766965e-01 -4.29450989e-01 -9.68298197e-01
-7.77071893e-01 3.26603746e+00 9.73035157e-01 2.04707098e+00
9.20305550e-01 1.13213634e+00 -8.85198236e-01 -5.76769710e-01
-9.21296328e-02 -1.16195357e+00 -1.82289100e+00 7.77973354e-01
1.02067661e+00 5.79175726e-02 5.16451836e-01 1.39397606e-01
-3.27563167e-01 1.46796083e+00 8.36651802e-01 3.82175475e-01
1.89115274e+00 7.36460805e-01 -8.06843400e-01 1.01860869e+00
2.18572950e+00 6.27861917e-01 -4.40298128e+00 2.01113749e+00
-9.79798198e-01 -9.63993311e-01 5.16322136e-01 5.24655759e-01
8.26422870e-01 -9.37060893e-01 3.28012466e-01 -6.67201459e-01
-1.32433999e+00 9.56477880e-01 -7.26107121e-01 1.73469079e+00
-4.42342311e-01 -5.79076588e-01 -3.35034728e-01 -2.17912149e+00
-1.78229666e+00 2.15715027e+00 1.28357923e+00 -1.11447978e+00
1.89849412e+00 -2.23427010e+00 2.42171645e-01 6.20192707e-01
7.56160140e-01 7.62834430e-01 -1.24876583e+00 -3.52529325e-02
-8.03534448e-01 -1.00405550e+00 1.28899848e+00 -7.55189538e-01
-8.65692139e-01 5.43601930e-01 -1.39502323e+00 3.46995294e-01
3.72495979e-01 5.89095235e-01 5.28909504e-01 -1.43021822e-01
1.29158068e+00 1.01404309e+00 5.24685718e-02 7.07785606e-01
-9.92524743e-01 1.06645405e+00 -3.31768799e+00 1.17010665e+00
-2.12201308e-02 2.12407207e+00 4.52856362e-01 -2.13094807e+00
1.22240877e+00 1.76483440e+00 5.63757479e-01 2.27482840e-02
-7.82578051e-01 6.55233979e-01 -1.68829048e+00 -1.97470605e+00
1.15701902e+00 1.73967704e-01 -3.92328799e-01 -1.08283997e+00
-4.23514605e-01 1.08190870e+00 1.95784342e+00 7.40396738e-01
3.15758914e-01 1.24500239e+00 -1.83886051e-01 -4.03300762e-01
9.63891506e-01 -2.66965342e+00 -1.08974135e+00 -6.47073984e-01
-4.20866877e-01 4.16669101e-02 8.49810839e-01 -3.79641682e-01
2.59560299e+00 5.98434627e-01 1.56527415e-01 9.97580409e-01
1.54037014e-01 -2.14870143e+00 1.50862932e+00 1.11552691e+00
-5.53656481e-02 -7.64868081e-01 -1.87906563e+00 -2.33234227e-01
8.24601233e-01 -9.07707214e-01 -4.32973951e-01 -1.68721700e+00
1.23623168e+00 -2.51207888e-01 1.23811102e+00 2.35921681e-01
4.45801646e-01 -9.52544808e-01 -3.31173278e-02 -2.10778141e+00
4.41052318e-01 1.64004862e-01 2.00633675e-01 -5.18458903e-01
-3.22922134e+00 2.38281751e+00 -9.11737144e-01 6.25919461e-01
-2.02143624e-01 1.52351081e+00 8.71844411e-01 -2.43385211e-01
-8.49280506e-02 1.05988121e+00 1.83530784e+00 -2.30041528e+00
1.40521213e-01 7.97963321e-01 1.82160223e+00 4.02089119e-01
-1.67293236e-01 1.87644828e-02 1.16083391e-01 -1.42770684e+00
6.14264548e-01 -2.52290398e-01 4.14186388e-01 -8.00498366e-01
-3.00527096e+00 -6.18923366e-01 -2.17158389e+00 1.04483557e+00
-5.66190720e-01 7.34840930e-01 5.15204251e-01 5.56284308e-01
-2.09723878e+00 1.15115583e+00 -1.10679615e+00 -4.25647855e-01
8.58844280e-01 1.12773860e+00 3.92792225e-01 1.50818968e+00
8.81523192e-01 5.06254733e-01 2.12855029e+00 -8.24182689e-01
-6.23940408e-01 3.69376481e-01 7.31829882e-01 2.11863950e-01
-3.22329223e-01 -1.09455287e+00 -3.03726941e-01 1.15464973e+00
5.92558719e-02 7.71303236e-01 -3.19416970e-01 -2.24378204e+00
-9.95674074e-01 9.79117930e-01 2.53102446e+00 4.09687936e-01
8.75167489e-01 -1.08757794e+00 6.02834940e-01 5.47595501e-01
1.99013817e+00 2.27569073e-01 -1.28223801e+00 -1.12424254e-01
-1.09338664e-01 -1.70605540e+00 7.90782928e-01 1.53871334e+00
8.81542802e-01 1.16352689e+00 -5.02888978e-01 9.98773873e-01
1.07848799e+00 -2.70794839e-01 -1.82933703e-01 -2.59171438e+00
2.43784285e+00 -1.38736653e+00 5.82733572e-01 1.48292851e+00
-7.17417896e-01 -9.00878310e-01 -1.06900764e+00 -2.23889370e-02
-4.66238171e-01 -1.62953481e-01 -1.70614541e+00 -7.78070807e-01
-1.55341291e+00 -2.99770981e-01 -1.61867094e+00 5.90640843e-01
-7.11393476e-01 -1.14230692e+00 -1.06358933e+00 -2.29082108e+00
1.90523052e+00 1.34190202e+00 -1.12566185e+00 -1.62631798e+00
-1.74330199e+00 1.76145005e+00 5.88413775e-01 4.87259477e-01
6.37570381e-01 -2.10904884e+00 -2.73248434e+00 1.36632144e+00
5.17102361e-01 1.81352019e+00 -1.52900949e-01 1.61472940e+00
7.80211449e-01 -4.45352674e-01 -1.07424057e+00 -3.38628143e-01
8.42668891e-01 -1.22865999e+00 -2.18160963e+00 1.04563057e+00
-3.17455816e+00 -7.15807676e-02 -1.08275485e+00 -1.37529865e-01
-4.97523583e-02 2.35528573e-01 -8.55209589e-01 6.81321993e-02
-4.71212149e-01 7.51155466e-02 9.49396926e-04 1.19919086e+00
1.09794879e+00 1.03884578e+00 -2.55186439e+00 9.94643629e-01
-2.58225846e+00 8.86693716e-01 8.08496475e-01 2.30989739e-01
-1.24884295e+00 -1.52868414e+00 4.29533243e-01 5.46709061e-01
-7.35393822e-01 -3.64296675e-01 -1.53052461e+00 -1.97628391e+00
-3.41788739e-01 7.84188509e-01 -2.41260886e+00 -7.48425961e-01
-1.05449247e+00 2.88430423e-01 1.84820342e+00 6.74161792e-01
1.41794845e-01 -5.98825574e-01 3.73886198e-01 -2.48169422e+00
-2.27255845e+00 6.57229364e-01 -1.13276875e+00 -5.16856849e-01
-6.26782835e-01 9.48999941e-01 -9.35740620e-02 3.50742370e-01
2.98568994e-01 -1.01826072e+00 4.13419724e-01 1.95179069e+00
-9.75452304e-01 1.53202677e+00 2.69419169e+00 -6.85079396e-01
-1.90429139e+00 1.14199138e+00 7.08431363e-01 1.18132889e+00
3.70904803e-01 1.61715853e+00 5.48776269e-01 -7.83207536e-01
1.64842278e-01 2.39785656e-01 8.29384923e-01 -1.93895519e-01
-1.16729867e+00 -1.81284279e-01 -2.17861629e+00 -1.83944032e-02
6.66685343e-01 6.09669685e-01 5.20295858e-01 -3.53740901e-01
-1.17392814e+00 -2.94326997e+00 -1.37023851e-01 9.54749465e-01
-4.95018989e-01 -3.49337012e-01 -9.07384217e-01 1.31747472e+00
-2.54682332e-01 1.53595412e+00 2.21261811e+00 1.39771974e+00
2.76299238e+00 5.38638473e-01 -1.76050842e+00 7.06786215e-01
-7.02481449e-01 -1.10682738e+00 -7.84055272e-04 -2.80038333e+00
-1.28540707e+00 1.71843624e+00 2.44381762e+00 -2.75315881e+00
1.28551567e+00 9.19860154e-02 -2.58155704e-01 1.78802982e-01
9.01393533e-01 -2.08326268e+00 4.65304144e-02 -1.14663476e-02
-6.55864000e-01 1.34701610e-01 -5.88080943e-01 1.55230534e+00
9.63730633e-01 -1.20693719e+00 -2.06381734e-02 2.99363166e-01
1.93804479e+00 -3.03180647e+00 4.48871315e-01 -5.11733830e-01
1.49265826e+00 -2.96806842e-01 -1.63406193e-01 6.51193798e-01
-1.74828672e+00 -1.65763772e+00 -1.25743532e+00 -7.76271641e-01
-7.30356336e-01 -1.42850906e-01 -1.21008182e+00 4.31737840e-01
1.73356509e+00 -1.00885141e+00 5.99896491e-01 1.76815796e+00
1.70825934e+00 1.84353828e+00 -6.87059820e-01 5.29210627e-01
1.07635176e+00 -1.11646628e+00 1.71096578e-01 -4.89157289e-01
-1.22443688e+00 9.23360884e-01 2.66687535e-02 1.14623439e+00
6.79304957e-01 1.81946516e-01 -2.04774499e+00 -2.12440252e+00
-9.29764450e-01 -4.34975803e-01 1.36932423e-02 -3.67694259e-01
-1.00733125e+00 -1.16315138e+00 2.26713800e+00 -1.31239080e+00
5.92628837e-01 8.70307237e-02 2.06333899e+00 -1.66019177e+00
-3.97760153e-01 -1.26266098e+00 -7.93232262e-01 1.30879915e+00
9.85410452e-01 -1.19214833e-01 2.12099695e+00 8.54894280e-01
-1.04825747e+00 4.67185020e-01 2.45230627e+00 3.27637792e-01
4.10351396e-01 3.18526089e-01 -6.41824365e-01 9.89028871e-01
-3.61118078e-01 5.67802906e-01 8.15989852e-01 3.40589285e-01
-2.75196403e-01 8.75216424e-01 8.48937750e-01 7.71055929e-03
1.55311751e+00 2.54990363e+00 3.77822310e-01 2.52370447e-01
-1.15722322e+00 7.29334056e-01 -7.09478378e-01 -1.28088033e+00
-7.55041480e-01 3.00284553e+00 5.56356490e-01 8.64883602e-01
1.59248769e+00 -7.46075869e-01 -1.23655856e+00 -5.81199944e-01
5.60756862e-01 3.34257066e-01 9.54841077e-01 -7.23705664e-02
6.81679666e-01 -6.59659088e-01 1.19679809e+00 2.49275714e-01
-2.27278852e+00 -4.41923380e-01 -2.12598860e-01 1.01453349e-01
3.81671041e-01 -1.17353344e+00 6.83259428e-01 -1.09273970e+00
2.57141560e-01 -1.08354104e+00 -1.31781495e+00 -8.91826153e-01
-1.97217894e+00 9.93841827e-01 -1.92777868e-02 5.42257667e-01
and for the accuracy problem, when i just replace pics without changing the meta file of IJBC , it still show 100% accuracy...
i even input a dog pic...😩
and for the accuracy problem, when i just replace pics without changing the meta file of IJBC , it still show 100% accuracy...
i even input a dog pic...weary
thats weird... maybe you need to debug the verification func and check if the feats of pairs and similarity scores is normal.
as a beginner of cv, i trained this model on a tesla P4 sever.
in training, i use umd dataset , and reset the parameter after copying configs.
the log file show the result like this:training.log and the model is here: model
when i want to use the model on few pics selected from IJBC, the result came 100%.