deepinsight / insightface

State-of-the-art 2D and 3D Face Analysis Project
https://insightface.ai
23.46k stars 5.42k forks source link

Only CPUExecutionProvider is loaded if not importing pytorch #2344

Open offchan42 opened 1 year ago

offchan42 commented 1 year ago

Running without pytorch

from insightface.app import FaceAnalysis

face_detector = FaceAnalysis(providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
face_detector.prepare(ctx_id=0)

If I run the above code, only the CPU models would be loaded. Here is the output:

Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/2d106det.onnx landmark_2d_106 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/w600k_r50.onnx recognition ['None', 3, 112, 112] 127.5 127.5
set det-size: (640, 640)

Running with pytorch

import torch
from insightface.app import FaceAnalysis

face_detector = FaceAnalysis(providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
face_detector.prepare(ctx_id=0)

Here is the output. Notice the GPU is loaded properly.

Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /root/.insightface/models/buffalo_l/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /root/.insightface/models/buffalo_l/2d106det.onnx landmark_2d_106 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /root/.insightface/models/buffalo_l/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /root/.insightface/models/buffalo_l/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /root/.insightface/models/buffalo_l/w600k_r50.onnx recognition ['None', 3, 112, 112] 127.5 127.5
set det-size: (640, 640)

Import FaceAnalysis before importing torch

from insightface.app import FaceAnalysis
import torch

face_detector = FaceAnalysis(providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
face_detector.prepare(ctx_id=0)

Only the CPU is loaded:

Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/2d106det.onnx landmark_2d_106 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
Applied providers: ['CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}}
find model: /root/.insightface/models/buffalo_l/w600k_r50.onnx recognition ['None', 3, 112, 112] 127.5 127.5
set det-size: (640, 640)

What is the cause of these 3 different outcomes? Is this expected?

Environment

I run my code on Runpod cloud instance.

I can't replicate this issue on my laptop. It can always load GPU versions but I can replicate this issue on Runpod. It happens somewhat recently. (It didn't happen a few days earlier, according to some mystery)

phineas-pta commented 1 year ago

seem to be a problem of onnxruntime

microsoft/onnxruntime#11092

microsoft/onnxruntime#13264

microsoft/onnxruntime#16128

arad2022 commented 8 months ago

I use GPU GTX 1650 but I cannot use Cuda. What should I do? onnx==1.15.0 onnxruntime==1.17.0 onnxruntime-gpu==1.17.0 insightface==0.7.3

NVIDIA-SMI 536.23 Driver Version: 536.23 CUDA Version: 12.2

Arcitec commented 7 months ago

The problem is that ONNX (which powers Insightface) doesn't know how to search for CUDA. PyTorch knows how to search for it, and adds it to Python's internal path, so that Insightface can later find it.

The bug/issue is with ONNX library. I have coded a workaround here:

https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/238