pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team ongsp@ucsd.edu
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
DP-GEN Version
Version: 0.12.1
Platform, Python Version, Remote Platform, etc
python=3.9 or 3.10
pymatgen=2042.8.9 or 2023.8.10 or 2023.5.31 or 2022.11.1
Input Files, Running Commands, Error Log, etc.
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team ongsp@ucsd.edu
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Steps to Reproduce
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team ongsp@ucsd.edu
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Bug summary
conda create -n dpgen conda install dpgen or pip install dpgen or other methods
dpgen -h DeepModeling
Version: 0.12.1 Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite: Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments: {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} init_surf Generating initial data for surface systems. init_bulk Generating initial data for bulk systems. auto_gen_param auto gen param.json init_reaction Generating initial data for reactive systems. run Main process of Deep Potential Generator. run/report Report the systems and the thermodynamic conditions of the labeled frames. collect Collect data. simplify Simplify data. autotest Auto-test for Deep Potential. db Collecting data from DP-GEN. gui Serve DP-GUI.
optional arguments: -h, --help show this help message and exit
pip show pymatgen Name: pymatgen Version: 2024.8.9 Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures Home-page: https://pymatgen.org Author: Author-email: Pymatgen Development Team ongsp@ucsd.edu License: MIT Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
DP-GEN Version
Version: 0.12.1
Platform, Python Version, Remote Platform, etc
python=3.9 or 3.10 pymatgen=2042.8.9 or 2023.8.10 or 2023.5.31 or 2022.11.1
Input Files, Running Commands, Error Log, etc.
conda create -n dpgen conda install dpgen or pip install dpgen or other methods
dpgen -h DeepModeling
Version: 0.12.1 Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite: Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments: {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} init_surf Generating initial data for surface systems. init_bulk Generating initial data for bulk systems. auto_gen_param auto gen param.json init_reaction Generating initial data for reactive systems. run Main process of Deep Potential Generator. run/report Report the systems and the thermodynamic conditions of the labeled frames. collect Collect data. simplify Simplify data. autotest Auto-test for Deep Potential. db Collecting data from DP-GEN. gui Serve DP-GUI.
optional arguments: -h, --help show this help message and exit
pip show pymatgen Name: pymatgen Version: 2024.8.9 Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures Home-page: https://pymatgen.org Author: Author-email: Pymatgen Development Team ongsp@ucsd.edu License: MIT Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Steps to Reproduce
conda create -n dpgen conda install dpgen or pip install dpgen or other methods
dpgen -h DeepModeling
Version: 0.12.1 Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite: Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments: {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} init_surf Generating initial data for surface systems. init_bulk Generating initial data for bulk systems. auto_gen_param auto gen param.json init_reaction Generating initial data for reactive systems. run Main process of Deep Potential Generator. run/report Report the systems and the thermodynamic conditions of the labeled frames. collect Collect data. simplify Simplify data. autotest Auto-test for Deep Potential. db Collecting data from DP-GEN. gui Serve DP-GUI.
optional arguments: -h, --help show this help message and exit
pip show pymatgen Name: pymatgen Version: 2024.8.9 Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures Home-page: https://pymatgen.org Author: Author-email: Pymatgen Development Team ongsp@ucsd.edu License: MIT Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Further Information, Files, and Links
No response