developmentseed / landsat-util

A utility to search, download and process Landsat 8 satellite imagery
Creative Commons Zero v1.0 Universal
690 stars 147 forks source link

Download for collection data 1 from AWS and Google; Search extended with extra dict fields #240

Closed jmellian closed 7 years ago

jmellian commented 7 years ago

Added download Collection 1 landsat 8 data from AWS and Google after 1 may 2017: Example use: pre-collection en collection 1 Landsat 8 data

added extra fields to dict result for landsat search import field is the new 'product_id' in the Collection 1 datastructure

example use:

Added to Dict: result['results'] = [{'sceneID': i['sceneID'], 'sat_type': u'L8', 'path2': three_digit(i['path']), 'row2': three_digit(i['row']), 'download_links' : i['download_links'], 'BPF_NAME_OLI' : i['BPF_NAME_OLI'], 'thumbnail': i['browseURL'], 'date': i['acquisitionDate'], 'GROUND_CONTROL_POINTS_VERSION': i['GROUND_CONTROL_POINTS_VERSION'], 'DATE_L1_GENERATED': i['DATE_L1_GENERATED'], 'NADIR_OFFNADIR': i['NADIR_OFFNADIR'], 'data_geometry': i['data_geometry'], 'sunAzimuth': i['sunAzimuth'], 'cloudCover': i['cloudCover'], 'COLLECTION_NUMBER': i['COLLECTION_NUMBER'], 'sceneCenterLatitude': i['sceneCenterLatitude'], 'cartURL': i['cartURL'], 'sunElevation': i['sunElevation'], 'cloud_coverage': i['cloud_coverage'], 'CLOUD_COVER_LAND': i['CLOUD_COVER_LAND'], 'scene_id': i['scene_id'], 'GROUND_CONTROL_POINTS_MODEL': i['GROUND_CONTROL_POINTS_MODEL'], 'row': i['row'], 'imageQuality1': i['imageQuality1'], 'cloudCoverFull': i['cloudCoverFull'], 'aws_index': i['aws_index'], 'browseURL': i['browseURL'], 'browseAvailable': i['browseAvailable'], 'BPF_NAME_TIRS': i['BPF_NAME_TIRS'], 'dayOrNight': i['dayOrNight'], 'TIRS_SSM_MODEL': i['TIRS_SSM_MODEL'], 'CPF_NAME': i['CPF_NAME'], 'FULL_PARTIAL_SCENE': i['FULL_PARTIAL_SCENE'], 'DATA_TYPE_L1': i['DATA_TYPE_L1'], 'aws_thumbnail': i['aws_thumbnail'], 'google_index': i['google_index'], 'sceneStartTime': i['sceneStartTime'], 'dateUpdated': i['dateUpdated'], 'sensor': i['sensor'], 'lowerRightCornerLatitude': i['lowerRightCornerLatitude'], 'LANDSAT_PRODUCT_ID': i['LANDSAT_PRODUCT_ID'], 'acquisitionDate': i['acquisitionDate'], 'PROCESSING_SOFTWARE_VERSION': i['PROCESSING_SOFTWARE_VERSION'], 'lowerRightCornerLongitude': i['lowerRightCornerLongitude'], 'lowerLeftCornerLatitude': i['lowerLeftCornerLatitude'], 'sceneCenterLongitude': i['sceneCenterLongitude'], 'COLLECTION_CATEGORY': i['COLLECTION_CATEGORY'], 'upperLeftCornerLongitude': i['upperLeftCornerLongitude'], 'path': i['path'], 'lowerLeftCornerLongitude': i['lowerLeftCornerLongitude'], 'GEOMETRIC_RMSE_MODEL_X': i['GEOMETRIC_RMSE_MODEL_X'], 'GEOMETRIC_RMSE_MODEL_Y': i['GEOMETRIC_RMSE_MODEL_Y'], 'sceneStopTime': i['sceneStopTime'], 'upperLeftCornerLatitude': i['upperLeftCornerLatitude'], 'upperRightCornerLongitude': i['upperRightCornerLongitude'], 'product_id': i['product_id'], 'satellite_name': i['satellite_name'], 'GEOMETRIC_RMSE_MODEL': i['GEOMETRIC_RMSE_MODEL'], 'upperRightCornerLatitude': i['upperRightCornerLatitude'], 'receivingStation': i['receivingStation'], 'cloud': i['cloudCoverFull']} for i in r_dict['results']]