dewittpe / cpr

Control Polygon Reduction: Methods for quick and efficient placement of internal knots for B-splines and tensor products of B-splines.
http://www.peteredewitt.com/cpr/
2 stars 0 forks source link

move away from underscore version of dplyr functions #34

Closed dewittpe closed 2 years ago

dewittpe commented 6 years ago

In the plot.cpr_cp function, and likely several others. This is related to #33. A quick grep of the R/ directory yields the following todo list (based on comit 662ef5f)

$ grep -Pi "dplyr::.*_\(" *
cnr_diagnostics.R:    ggplot2::ggplot(dplyr::filter_(summary(x), .dots = ~ dplyr::between(index, from, to))) +
cnr.R:    w <- dplyr::filter_(w, ~ rank(`max(w)`, ties.method = "first") > 1)
cnr.R:  dplyr::mutate_(index = ~ as.integer(index)) %>%
cp.R:  .data <- dplyr::mutate_(dplyr::bind_rows(cps, .id = "row"),
cp.R:  .data <- dplyr::rename_(.data, .dots =
cp.R:  knot_data <- dplyr::mutate_(dplyr::bind_rows(knot_data, .id = "row"),
cp.R:    dplyr::mutate_(dplyr::bind_rows(spline_data, .id = "row"),
cp.R:      ggplot2::geom_rug(data = function(x) dplyr::filter_(x, .dots = ~ object == "knots"))
cp.R:      ggplot2::geom_point(data = function(x) dplyr::filter_(x, .dots = ~ object == "cp")) +
cp.R:      ggplot2::geom_line(data = function(x) dplyr::filter_(x, .dots = ~ object == "cp"))
cp.R:      ggplot2::geom_line(data = function(x) dplyr::filter_(x, .dots = ~ object == "spline"))
cpr_diagnostics.R:    ggplot2::ggplot(dplyr::filter_(summary(x), .dots = ~ dplyr::between(index, from, to))) +
cpr.R:  dplyr::mutate_(index = ~ as.integer(index)) %>%
generate_cp_formula_data.R:  data_nobsplines_nobars <- dplyr::select_(.data, .dots = vars_nobsplines_nobars)
generate_cp_formula_data.R:    dplyr::select_(data_nobsplines_nobars, .dots = dplyr::setdiff(names(data_nobsplines_nobars), factors))
generate_cp_formula_data.R:    dplyr::select_(.data, .dots = dplyr::setdiff(intersect(all.vars(lme4::subbars(f)), names(.data)),
generate_cp_formula_data.R:  data_nobsplines_nobars <- dplyr::select_(.data, .dots = vars_nobsplines_nobars)
influence_of.R:  weight <- dplyr::filter_(weight, .dots = ~ index %in% indices)
influence_of.R:  weight <- dplyr::mutate_(weight, .dots = stats::setNames(list(~ rank(w)), "rank"))