dexink / Curation-preliminary

0 stars 0 forks source link

Current Published Data #2

Open dexink opened 1 year ago

dexink commented 1 year ago

Beginning with sequence-based searches of the literature via PaperBLAST and using the sequences acquired from PomBase, UniProtKB

dexink commented 1 year ago

PaperBLAST - Q9HDZ9 (Queuosine 5'-phosphate N-glycosylase/hydrolase)

Query Sequenece: Q9HDZ9

QNG1_SCHPO / Q9HDZ9 Queuosine 5'-phosphate N-glycosylase/hydrolase; Queuosine-nucleotide N-glycosylase/hydrolase; EC 3.2.2.- from Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast) (see 2 papers) SPAC589.05c conserved eukaryotic protein (RefSeq) from Schizosaccharomyces pombe 100% identity, 100% coverage&def2=QNG1_SCHPO%20/%20Q9HDZ9&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=VIMSS6576332)

function: Catalyzes the hydrolysis of queuosine 5'-phosphate, releasing the nucleobase queuine (q) (By similarity). Is required for salvage of queuine from exogenous queuosine (Q) that is imported and then converted to queuosine 5'-phosphate intracellularly (PubMed:36610787). catalytic activity: H2O + queuosine 5'-phosphate = D-ribose 5-phosphate + queuine (RHEA:75387) disruption phenotype: Lacks queuosine in tRNA(Asp) (PubMed:24911101). Supplying exogenous queuosine (Q) or queuine (q) results in q incorporation in tRNA(Asp) in the wild-type S.pombe strain, whereas the deletion mutant strain fails to utilize exogenous Q to modify its tRNA while retaining the ability to use q (PubMed:36610787). Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Hung, Nucleic acids research 2023 “...strains and plasmids The haploid S. pombe strains WT, qtrt1 (SPAC1687.19c), qng1 (formerly duf2419 / SPAC589.05c) were acquired from Bioneer, Inc. ( 39 ) and described previously ( 34 ). For Q/q salvage assays, S. pombe strains were grown in YES media ( 39 ) at...” Queuosine salvage in fission yeast by Qng1-mediated hydrolysis to queuine Patel, Biochemical and biophysical research communications 2022 (PubMed) “...0 false false Qtr3 SPAC589.05c ribonucleoside hydrolase ribonucleoside glycosylase urh1 urh2...” “...Graphical abstract Image 1 Keywords Qtr3 SPAC589.05c ribonucleoside hydrolase ribonucleoside glycosylase urh1 urh2 1 Introduction Modifications on transfer...” Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...Finally, to explore other types of functional associations, we used the S. pombe DUF21419 gene (SPAC589.05c) as input in the STRING database (Search Tool for the Retrieval of Interacting Genes/Protein; http://string-db.org ). 54 The top association detected was the fusion with the PUA domain protein discussed...” “...the gene SPAC1687.19c (Bioneer reference BG_H0432) and duf2419:kanMX4 corresponding to the deletion of the gene SPAC589.05c (Bioneer reference BG_H2044), respectively abbreviated qtrt1 and duf2419 , were obtained from Bioneer. The cells were grown on yeast extract peptone dextrose agar supplemented with G418 disulfate salt (Sigma, 200...” Population genomics of the fission yeast Schizosaccharomyces pombe Fawcett, PloS one 2014 “...Slm1 SPBC336.05c 2:27485522745480 2.925 0.568 small RNA 2-O-methyltransferase activity SPAC22A12.06c 1:11655811163745 2.916 0.293 serine hydrolase-like SPAC589.05c 1:31026883101103 2.722 0.057 conserved eukaryotic protein SPBC1718.04 2:34755613478365 2.706 0.000 glycerol-3-phosphate O-acyltransferase SPAC3C7.05c 1:20735912071691 2.608 0.063 alpha-1,6- mannanase SPBC17G9.05 2:21777332179449 2.566 0.032 RRM-containing cyclophilin regulating transcription Rct1 SPAC644.14c 1:27002832698110 2.552...” Queuine Salvaging in the Human Parasite Entamoeba histolytica Sarid, Cells 2022 “...of E. histolytica s genome, there is a homolog of S. pombe DUF2419 (accession number Q9HDZ9) in E. histolytica , namely, EhDUF2419 (EHI_098190/XP_653631.1). The EhDUF2419 gene is highly homologous to S. pombe DUF2419 (query cover 97%; E value 1E 28 ; percentage identity 27.1%). As a...” Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...which was set at 10 10 ) using the sequences of S chizosaccharomyces pombe 972h- (Q9HDZ9, Fungi), Homo sapiens (Q5T6V5, Metazoa), Glycine max (NP_001242636, Viridiplantae), Galdieria sulphuraria (XP_005706831, Red algae), Naegleria gruberi (XP_002680366, Heterolobosea) and Conexibacter woesei DSM 14684 (YP_003392877, Actinobacteria) as seed allowed identifying 385...” QNG1_HUMAN / Q5T6V5 Queuosine 5'-phosphate N-glycosylase/hydrolase; Q-nucleotide N-glycosylase 1; Queuine salvage protein QNG1; Queuosine-nucleotide N-glycosylase/hydrolase; EC 3.2.2.- from Homo sapiens (Human) (see 2 papers) 41% identity, 99% coverage&def2=QNG1_HUMAN%20/%20Q5T6V5&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=Q5T6V5)

function: Catalyzes the hydrolysis of queuosine 5'-phosphate, releasing the nucleobase queuine (q). Is required for salvage of queuine from exogenous queuosine (Q) that is imported and then converted to queuosine 5'-phosphate intracellularly. In vitro, can also catalyze the release of the q base directly from Q as substrate; however, it was shown that Q is not the biologically relevant substrate. Shows a very low activity on queuosine 3',5'-diphosphate, and cannot release q from queuosine 3'-phosphate and from the 5'-nucleotides AMP, UMP, CMP or GMP, indicating specificity for the queuine base (PubMed:36610787). Can complement the yeast mutant SPAC589.05c, restoring Q incorporation into tRNA (PubMed:24911101). catalytic activity: H2O + queuosine 5'-phosphate = D-ribose 5-phosphate + queuine (RHEA:75387) Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Alasmari, Molecules (Basel, Switzerland) 2021 “...1.8 UP 21 1120 O75648 Mitochondrial tRNA-specific 2-thiouridylase 1 MTU1_HUMAN 0.02 1.8 UP 6 1937 Q5T6V5 Queuosine salvage protein CI064_HUMAN 0.008 1.8 UP 2 1792 P02766 Transthyretin TTHY_HUMAN 0.005 1.8 UP 76 1865 P02766 Transthyretin TTHY_HUMAN 0.04 1.8 UP 59 457 Q96M63 Coiled-coil domain-containing protein 114...” Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells Ou, Stem cell research & therapy 2019 “...Q10589 Bone marrow stromal antigen 2 OS=Homo sapiens OX=9606 GN=BST2 BST2 Up 2.169 0.0177766 5 Q5T6V5 Queuosine salvage protein OS=Homo sapiens OX=9606 GN=C9orf64 C9orf64 Up 1.978 0.00048022 6 Q16850 Lanosterol 14-alpha demethylase OS=Homo sapiens OX=9606 GN=CYP51A1 CYP51A1 Down 0.833 0.00041878 7 P21399 Cytoplasmic aconitate hydratase OS=Homo...” Bicuspid Aortic Valve Alters Aortic Protein Expression Profile in Neonatal Coarctation Patients. Skeffington, Journal of clinical medicine 2019 “...1.71 O95865 DDAH2 N(G), N(G)-dimethylarginine dimethylaminohydrolase 2 1.57 2.60 0.32 0.29 0.61 0.047 0.72 1.33 Q5T6V5 C9orf64 UPF0553 protein C9orf64 1.11 1.80 0.19 0.24 0.62 0.047 0.70 1.33 P01034 CST3 Cystatin-C 1.55 2.51 0.27 0.31 0.62 0.041 0.69 1.39 Q7Z4V5 HDGFRP2 Hepatoma-derived growth factor-related protein 2...” Hepatic protein Carbonylation profiles induced by lipid accumulation and oxidative stress for investigating cellular response to non-alcoholic fatty liver disease in vitro Chienwichai, Proteome science 2019 “...54 P10809 60kDa heat shock protein, mitochondrial 66 4.8 61.0 5.7 329 26 0.00 55 Q5T6V5 UPF0553 protein C9orf64 43 5.5 39.0 5.6 191 11 3.64 56 P09661 U2 small nuclear ribonucleoprotein A 33 9.0 28.4 8.7 131 4 1.69 57 P54819 Adenylate kinase 2, mitochondrial...” Patients with early-stage oropharyngeal cancer can be identified with label-free serum proteomics. Tuhkuri, British journal of cancer 2018 “...19 17 146.18 0 7.40 Control Stage III OPSCC Hyaluronan-binding protein 2 HABP2 0.07 0.99 Q5T6V5 5 4 38.73 0 64.40 Control Stage III OPSCC UPF0553 protein C9orf64 C9orf64 0.09 0.99 Proteinprotein interactions To further study our set of S-plot proteins and to try to identify...” Porcine Reproductive and Respiratory Syndrome Virus strains with Higher Virulence Cause Marked Protein Profile Changes in MARC-145 Cells. Chen, Scientific reports 2018 “...up gi|693937 UBR5 O95071 up gi|70980549 PDCD11 Q14690 down gi|71891685 CAND1 Q86VP6 down gi|73620030 C9orf64 Q5T6V5 down gi|73909156 ANXA2 P07355 down gi|7417372 HABP4 Q5JVS0 down gi|75040155 GBP1 P32455 up gi|75075786 ARL6IP5 O75915 down gi|75075845 VIM P08670 up gi|82400267 AKR1C3 P42330 down gi|8392875 C16orf80 Q9Y6A4 down gi|89365957...” Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer Yeh, Molecular & cellular proteomics : MCP 2015 “...Q9Y617 P51812 Q08623 P13804 P15374 P30405 Q2PPJ7 Q9P015 Q5T6V5 P38117 Q9NRF8 Q15125 Q9UIJ7 O15228 P35754 P48506 Q9HC35 O14936 P51690 P09417 P11766 P21291 O94832...” Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model. Nagy, American journal of cancer research 2015 More 8dl3B / Q5T6V5 Crystal structure of the human queuine salvage enzyme duf2419, complexed with queuine (see paper) 41% identity, 99% coverage&def2=8dl3B%20/%20Q5T6V5&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=biolip::8dl3B)

Ligand: 2-amino-5-({[(1s,4s,5r)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4h-pyrrolo[2,3-d]pyrimidin-4-one (8dl3B) Q1JP73 Queuosine 5'-phosphate N-glycosylase/hydrolase from Bos taurus 40% identity, 99% coverage&def2=Q1JP73&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=Q1JP73)

Changes in serum proteins after endotoxin administration in healthy and choline-treated calves Yilmaz, BMC veterinary research 2016 “...A8YXX7; Trefoil factor 3/4.93 Q2TBS3; Uncharacterized protein C20orf79 homolog/4.76 Q96629; Adenain/2.23 P19034; Apolipoprotein C II/4.21 Q1JP73; UPF0553 protein C9orf64 homolog/12.57 Q9TTK6-2; Isoform 2 of Membrane primary amine oxidase/2.30 Q1JP73; UPF0553 protein C9orf64 homolog/1.95 Q56K14; 60S acidic ribosomal protein P1/Infinity Q3SZV7; Hemopexin/2.10 Q1JQ97; Bardet Biedl syndrome 4...” E1C455 Queuosine salvage protein from Gallus gallus 40% identity, 99% coverage&def2=E1C455&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=E1C455)

Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness Cook, Scientific reports 2023 “...component 4 binding protein alpha Q4AEJ1 0.962 0.0337 C9orf64 chromosome 9 open reading frame 64 E1C455 2.699 0.00741 CCDC93 coiled-coil domain containing 93 CCD93 3.929 0.0408 CCT2 chaperonin containing TCP1 subunit 2 Q5F424 1.309 0.00143 CCT5 chaperonin containing TCP1 subunit 5 Q5F411 1.198 0.0324 CCT7 chaperonin...” QNG1_MOUSE / G3X8U3 Queuosine 5'-phosphate N-glycosylase/hydrolase; Queuosine-nucleotide N-glycosylase/hydrolase; EC 3.2.2.- from Mus musculus (Mouse) (see paper) 40% identity, 99% coverage&def2=QNG1_MOUSE%20/%20G3X8U3&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=G3X8U3)

function: Catalyzes the hydrolysis of queuosine 5'-phosphate, releasing the nucleobase queuine (q). Is required for salvage of queuine from exogenous queuosine (Q) that is imported and then converted to queuosine 5'-phosphate intracellularly. catalytic activity: H2O + queuosine 5'-phosphate = D-ribose 5-phosphate + queuine (RHEA:75387) iTRAQ-Based Proteomics Reveals Gu-Ben-Fang-Xiao Decoction Alleviates Airway Remodeling via Reducing Extracellular Matrix Deposition in a Murine Model of Chronic Remission Asthma. Xing, Frontiers in pharmacology 2021 “...Col4a3 Collagen alpha-3(IV) chain Q9R0Y5 0.65 Ak1 Adenylate kinase isoenzyme 1 Q99MQ4 0.63 Aspn Asporin G3X8U3 1.92 2210016F16Rik Queuosine salvage protein P04370 0.57 Mbp Myelin basic protein Q08189 0.53 Tgm3 Protein-glutamine gamma-glutamyltransferase E Q9D881 0.65 Cox5b Cytochrome c oxidase subunit 5B Z4YJF5 0.46 Myom1 Myomesin-1 Q3TLQ9...” XP_002633628 Protein CBG05511 from Caenorhabditis briggsae 37% identity, 63% coverage&def2=XP_002633628&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=XP_002633628.1)

Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...to PseudoUridine synthase and Archaeosine transglycosylase (PUA) ( Supplementary Figure S5A , and accession number XP_002633628). 50 PUA domains are tRNA binding domains found in RNA modification enzymes. 51 , 52 However, the sequence of this fusion protein failed to yield any significant hits crossing the...” CG9752 uncharacterized protein from Drosophila melanogaster 36% identity, 99% coverage&def2=CG9752&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=NP_611573.1)

Functional unknomics: closing the knowledge gap to accelerate biomedical research Rocha, 2022 Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development Tse, International journal of molecular sciences 2022 “...CCT3 4.81E-05 0.289356898 0.669 0.852 tko 0.060424 0.288967965 0.515 0.744 ND-19 6.71E-06 0.288617644 0.468 0.717 CG9752 1.15E-05 0.288354586 0.316 0.44 mge 2.15E-08 0.288185938 0.449 0.704 Srp19 8.31E-13 0.287931596 0.401 0.64 Chc 3.98E-16 0.287462202 0.377 0.612 eIF3j 6.29E-20 0.287256028 0.367 0.623 CG14543 1.82E-16 0.286760991 0.276 0.458 CCT6...” Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. Harris, eLife 2020 “...so that Gal4/UAS can be used to knock-down candidate genes. Using DUAL, they show that CG9752, a previously uncharacterized gene encoding a secreted protein they now name asperous , is required for full regeneration, but surprisingly apontic is a negative regulator of regeneration. Essential revisions: The...” “...capacity decreases with time in the Drosophila wing disc. [] Using DUAL, they show that CG9752, a previously uncharacterized gene encoding a secreted protein they now name asperous, is required for full regeneration, but surprisingly apontic is a negative regulator of regeneration. Essential revisions: The biggest...” Regenerative capacity inDrosophilaimaginal discs is controlled by damage-responsive, maturity-silenced enhancers Harris, 2019 A rapid one-generation genetic screen in a Drosophila model to capture rhabdomyosarcoma effectors and therapeutic targets Galindo, G3 (Bethesda, Md.) 2014 “..., CG30393 , CG34023 , MFS16 , CG10505 , CG30392 , Sgf29 , RpL29 , CG9752 , CG42672 , CG9754 , CG9485 , CG33655 , CG30394 , dom , CG15666 , CG9822 , CG17974 , cv-2 Candidate suppressors (57E1;57F3): Sdc , Sara , Fkbp14 , TAF1c-like...” “..., CG30393 , CG34203 , MFS16 , CG10505 , CG30392 , Sgf29 , RpL29 , CG9752 , CG42672 , CG957 , CG9485 , CG33655 , CG30394 , domino , CG15666 , CG9822 , CG17974 , cv-2 Candidate suppressors (57E1; 57F3): CG10795 , EfSec , Acox57D-p ,...” Analysis of Ras-induced overproliferation in Drosophila hemocytes Asha, Genetics 2003 “...CG15211 CG11120 CG16873 CG15347 CG10722 CG17383 CG8486 CG9752 CG9917 CG16876 CG10927 CG6579 CG12592 CG15818 CG6014 CG7763 CG5100 CG6643 CG15707 CG6249 CG11399...” B4F797 Queuosine salvage protein (Fragment) from Rattus norvegicus 42% identity, 75% coverage&def2=B4F797&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=B4F797)

iTRAQ-Based Protein Profiling in CUMS Rats Provides Insights into Hippocampal Ribosome Lesion and Ras Protein Changes Underlying Synaptic Plasticity in Depression. Zhang, Neural plasticity 2019 “...in control group / Q5YB86 Itch E3 ubiquitin ligase Itch Undetected in control group / B4F797 RGD1311345 protein (fragment) RGD1311345 Undetected in control group / G3V6E7 Fibromodulin Fmod Undetected in control group / Q8VHJ9 Nesprin-1 Syne1 Undetected in control group / P04177 Tyrosine 3-monooxygenase Th Undetected...” QNG1_SPHTD / D1C7A6 Queuosine 5'-phosphate N-glycosylase/hydrolase; Queuine salvage protein Qng1; Queuosine-nucleotide N-glycosylase/hydrolase; EC 3.2.2.- from Sphaerobacter thermophilus (strain DSM 20745 / S 6022) (see paper) Sthe_2331 hypothetical protein (RefSeq) from Sphaerobacter thermophilus DSM 20745 33% identity, 92% coverage&def2=QNG1_SPHTD%20/%20D1C7A6&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=VIMSS10243458)

function: Catalyzes the hydrolysis of queuosine 5'-phosphate, releasing the nucleobase queuine (q). Is likely required for salvage of queuine from exogenous queuosine (Q) that is imported and then converted to queuosine 5'-phosphate intracellularly. In vitro, can also catalyze the release of the q base directly from Q as substrate; however, Q may not be the biologically relevant substrate. Shows a very low activity on queuosine 3',5'-diphosphate, and cannot release q from queuosine 3'- phosphate and from the 5'-nucleotides AMP, UMP, CMP or GMP, indicating specificity for the queuine base. catalytic activity: H2O + queuosine 5'-phosphate = D-ribose 5-phosphate + queuine (RHEA:75387) subunit: Monomer. Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Hung, Nucleic acids research 2023 “...the synthesized H. sapiens QNG1 coding sequence (plasmid HR5270-1-341-21.6) or S. thermophilus DSM 20745 Qng1 (Sthe_2331) recoded sequence (GenScript USA Inc., plasmid PeR1-21.1). The corresponding gene sequences are provided in the SupplementaryTable S5. The S. thermophilus gene was PCR amplified from PeR1-21.1 using the primer set...” Codon influence on protein expression in E. coli correlates with mRNA levels Boël, Nature 2016 “...subsp. tularensis FSC033; FTN_1238 from Francisella tularensis subsp. novicida U112; O1O_09285 from Pseudomonas aeruginosa MPAO1/P1; Sthe_2331 from Sphaerobacter thermophilus DSM20745/S6022; SEVCU126_0606 from Staphylococcus epidermidis VCU126; and Y007_20720 from Salmonella enterica subsp. enterica serovar Montevideo 507440-20. Extended Data Figure 8 Yield of mRNA from in vitro transcription...” Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...shows superposition of the homology model generated by PHYRE2 for StDUF2419 (the product of the Sthe_2331 gene, shown in cyan) with the template structure used to generate this model, 8-oxoguanine (8OG) DNA glycosylase from Pyrobaculum aerophilum (PDB 1XQO, shown in yellow). The 8OG molecule and the...” “...UPF0553 protein C9orf64) coding sequence and S. thermophilus DSM 20745 DUF2419 (abbreviated StDUF2419, hypothetical protein Sthe_2331) recoded sequence (GenScript USA Inc.) that were amplified by PCR with the addition of restrictions sites Xho I and Bam HI at their 5 and 3 ends. These four DNA...” 7u5aA / D1C7A6 Crystal structure of queuine salvage enzyme duf2419 mutant k199c, complexed with queuosine (see paper) 33% identity, 92% coverage&def2=7u5aA%20/%20D1C7A6&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=biolip::7u5aA)

Ligand: 2-amino-5-({[(1s,4s,5r)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-7-beta-d-ribofuranosyl-3,7-dihydro-4h-pyrrolo[2,3-d]pyrimidin-4-one (7u5aA) Q5T6V7 Queuosine salvage protein from Homo sapiens NP_001304926 queuosine salvage protein isoform 2 from Homo sapiens 43% identity, 58% coverage&def2=Q5T6V7&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=Q5T6V7)

Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum Gao, Cancer biology & medicine 2015 “...(Drosophila) OS=Homo sapiens GN=TRFP PE=2 SV=1 - [B4DE08_HUMAN] 29.27 4 1 1 123 13.5 7.17 Q5T6V7 Chromosome 9 open reading frame 64 OS=Homo sapiens GN=C9orf64 PE=2 SV=1 - [Q5T6V7_HUMAN] 3.00 2 1 1 200 23.3 6.30 B3KW33 Oxysterol-binding protein OS=Homo sapiens GN=OSBPL9 PE=2 SV=1 - [B3KW33_HUMAN]...” Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Hung, Nucleic acids research 2023 GeneRIF: Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. XP_002680366 uncharacterized protein from Naegleria gruberi 32% identity, 99% coverage&def2=XP_002680366&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=XP_002680366.1)

Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...Homo sapiens (Q5T6V5, Metazoa), Glycine max (NP_001242636, Viridiplantae), Galdieria sulphuraria (XP_005706831, Red algae), Naegleria gruberi (XP_002680366, Heterolobosea) and Conexibacter woesei DSM 14684 (YP_003392877, Actinobacteria) as seed allowed identifying 385 DUF2419 (25 bacterial and 260 eukaryotic homologues, respectively). The use of other seeds did not allow retrieving...” NP_001242636 uncharacterized protein LOC100802234 from Glycine max 30% identity, 100% coverage&def2=NP_001242636&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=NP_001242636.1)

Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...the sequences of S chizosaccharomyces pombe 972h- (Q9HDZ9, Fungi), Homo sapiens (Q5T6V5, Metazoa), Glycine max (NP_001242636, Viridiplantae), Galdieria sulphuraria (XP_005706831, Red algae), Naegleria gruberi (XP_002680366, Heterolobosea) and Conexibacter woesei DSM 14684 (YP_003392877, Actinobacteria) as seed allowed identifying 385 DUF2419 (25 bacterial and 260 eukaryotic homologues, respectively)....” XP_005706831 hypothetical protein from Galdieria sulphuraria 35% identity, 80% coverage&def2=XP_005706831&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=XP_005706831.1)

Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...chizosaccharomyces pombe 972h- (Q9HDZ9, Fungi), Homo sapiens (Q5T6V5, Metazoa), Glycine max (NP_001242636, Viridiplantae), Galdieria sulphuraria (XP_005706831, Red algae), Naegleria gruberi (XP_002680366, Heterolobosea) and Conexibacter woesei DSM 14684 (YP_003392877, Actinobacteria) as seed allowed identifying 385 DUF2419 (25 bacterial and 260 eukaryotic homologues, respectively). The use of other...” EHI_098190 hypothetical protein from Entamoeba histolytica HM-1:IMSS 27% identity, 98% coverage&def2=EHI_098190&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=XP_653631.1)

Entamoeba histolytica-Gut Microbiota Interaction: More Than Meets the Eye. Ankri, Microorganisms 2021 “...a dedicated enzymatic machinery to salvage Q. One possible candidate for this function is DUF2419 (EHI_098190), an E. histolytica protein with structural similarity with DNA glycosidases. Work is in progress to characterize the involvement of EhDUF2419 in the salvage of Q from bacteria. 3. Queuine regulates...” Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. Nagaraja, mBio 2021 “...involved in Q salvage in S. pombe ( 41 ). E. histolytica expresses a gene, EHI_098190, which is strongly homologous to S. pombe DUF2419 (query cover, 97%; E value, 1E28; percentage identity, 27.1%). Work is in progress to characterize the involvement of EhDUF2419 in the salvage...” YP_003392877 Protein of unknown function DUF2419 (RefSeq) from Conexibacter woesei DSM 14684 31% identity, 53% coverage&def2=YP_003392877&seq1=MSRVLQDAEFISLNSNDVKVNKGGCAAVATWIKEKLDSLGPQFAEWQNHELHPKTRDVSTLDWIFLVDILNFSFWSDVDVEDSGKHSKRFSIEYKGKLYTGYWSLCAAINKALDAGIPITSPAFYADEKQCPDTLIASVFDSATVEKIPLLEERIRIMRASGRVLVDSYHGSYCGLLKKCHNQAQRLIKLLLADFPDFRDVSVYKGRECYMLKRAQILVAETWACFQGQNYGRFDDIDSITMFADYRVPQILWQLGCLSYSSDFKKRLLKNELIAHNDPMEIEMRGCSIWAVEKILQNINRKDVNAITIDFFLWDLAKEWQAKGYKPSTQVDEVTIPCIRVRSIYY&acc2=VIMSS10217491)

Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...Viridiplantae), Galdieria sulphuraria (XP_005706831, Red algae), Naegleria gruberi (XP_002680366, Heterolobosea) and Conexibacter woesei DSM 14684 (YP_003392877, Actinobacteria) as seed allowed identifying 385 DUF2419 (25 bacterial and 260 eukaryotic homologues, respectively). The use of other seeds did not allow retrieving more sequences. The retrieved sequences were aligned...”

dexink commented 1 year ago

PaperBLAST - O94460 (Queuine tRNA-ribosyltransferase catalytic subunit)

Query Sequence: O94460

TGT_SCHPO / O94460 Queuine tRNA-ribosyltransferase catalytic subunit; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast) (see 2 papers) SPAC1687.19c queuine tRNA-ribosyltransferase (RefSeq) from Schizosaccharomyces pombe 100% identity, 100% coverage&def2=TGT_SCHPO%20/%20O94460&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS6575335)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:24911101). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product. catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit and an accessory subunit. disruption phenotype: Lacks queuosine in tRNA(Asp). Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Hung, Nucleic acids research 2023 “...purchased from Epitoire (Singapore). S.pombe strains and plasmids The haploid S. pombe strains WT, qtrt1 (SPAC1687.19c), qng1 (formerly duf2419 / SPAC589.05c) were acquired from Bioneer, Inc. ( 39 ) and described previously ( 34 ). For Q/q salvage assays, S. pombe strains were grown in YES...” Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family Zallot, ACS chemical biology 2014 “...content of tRNA Asp GUC purified from WT S. pombe cells versus qtrt1 (deletion in SPAC1687.19c) derivatives. Whereas the amount of tRNA was similar in both strains, the Q content of tRNA Asp GUC from the qtrt1 strain was below the detection limit of our experimental...” “...(SP286; h+/, ade6-M216 ura4-D18 leu1-32, reference BG_0000H8), qtrt1:kanMX4 corresponding to the deletion of the gene SPAC1687.19c (Bioneer reference BG_H0432) and duf2419:kanMX4 corresponding to the deletion of the gene SPAC589.05c (Bioneer reference BG_H2044), respectively abbreviated qtrt1 and duf2419 , were obtained from Bioneer. The cells were grown...” Cross-species Functionome analysis identifies proteins associated with DNA repair, translation and aerobic respiration as conserved modulators of UV-toxicity Rooney, Genomics 2011 “...Tcg1 single-stranded telomeric binding protein Tgc1 slightly Spac1782.01 proteasome component slightly Spac959.06c sequence orphan slightly Spac1687.19c queuine tRNA-ribosyltransferase slightly Spbc25d12.06 RNA helicase slightly Rex3 exonuclease Rex3 slightly Spbc1685.05 serine protease slightly Hus1 checkpoint clamp complex protein Hus1 slightly Spcc16a11.16c ARM1 family slightly Ats1 N-acetyltransferase Ats1 slightly...” AO090206000067 No description from Aspergillus oryzae RIB40 66% identity, 95% coverage&def2=AO090206000067&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=XP_001826569.1)

Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae Inglis, BMC microbiology 2013 “...AO090124000048 AO090124000035 - AO090124000040 ECS, FA ECS AO090206000074 cluster AO090206000074 AO090206000075 - AO090206000074 AO090206000082 - AO090206000067 AO090206000074 - AO090206000072 ECS, IGD ECS, IGD AO090701000530 cluster AO090701000530 AO090701000525 - AO090701000543 AO090701000525 - AO090701000539 AO090701000525 - AO090701000530 ECS, IGD ECS, IGD AO090701000600 cluster AO090701000600 AO090701000600 - AO090701000603 AO090701000912...” TGT_HUMAN / Q9BXR0 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Homo sapiens (Human) (see 3 papers) Q9BXR0 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Homo sapiens (see 2 papers) QTRT1 / Q9BXR0 queuine tRNA-ribosyltransferase catalytic subunit (EC 2.4.2.64) from Homo sapiens (see paper) NP_112486 queuine tRNA-ribosyltransferase catalytic subunit 1 from Homo sapiens 57% identity, 97% coverage&def2=TGT_HUMAN%20/%20Q9BXR0&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q9BXR0)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:11255023, PubMed:20354154). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product (By similarity). catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. Biela, PloS one 2013 “...template to create a model of the human Tgt catalytic subunit (UniProtKB/Swiss-Prot [44] accession code Q9BXR0). Using ClustalW 1.83 [45] the corresponding sequences aligned with 42% identity. Based on the alignment, ten homology models for human Tgt were calculated with MODELLER 6a [46] . As no...” The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Fergus, Nucleic acids research 2021 GeneRIF: The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. Biela, PloS one 2013 GeneRIF: Homology models of C elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Chen, Nucleic acids research 2011 GeneRIF: phylogenetic and kinetic analyses support the conclusion that all tRNA-guanine transglycosylases have divergently evolved to specifically recognize their cognate heterocyclic substrates. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Eric, Biochemical and biophysical research communications 2011 GeneRIF: the inhibition of the human TGT by biopterin, consistent with earlier reports on other eukaryal TGTs, and supportive of the concept that pteridines may regulate eukaryal TGT activity in vivo. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. Chen, RNA (New York, N.Y.) 2010 GeneRIF: TGT is composed of a catalytic subunit, QTRT1, and QTRTD1, not USP14. QTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. 6h42A / Q9BXR0 Crystal structure of the human tgt catalytic subunit qtrt1 (see paper) 57% identity, 97% coverage&def2=6h42A%20/%20Q9BXR0&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::6h42A)

Ligand: zinc ion (6h42A) TGT_RAT / Q4QR99 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Rattus norvegicus (Rat) (see paper) NP_071586 queuine tRNA-ribosyltransferase catalytic subunit 1 from Rattus norvegicus 55% identity, 97% coverage&def2=TGT_RAT%20/%20Q4QR99&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_071586.2)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product. catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting the conservation of aspartates 89, 143 and 264;...” NP_608585 tRNA-guanine transglycosylase from Drosophila melanogaster 55% identity, 94% coverage&def2=NP_608585&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_608585.1)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting...” TGT_MOUSE / Q9JMA2 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Mus musculus (Mouse) (see 2 papers) NP_068688 queuine tRNA-ribosyltransferase catalytic subunit 1 from Mus musculus 55% identity, 97% coverage&def2=TGT_MOUSE%20/%20Q9JMA2&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_068688.2)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:19414587, PubMed:29862811). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product (By similarity). catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting the conservation of aspartates...” 7b2iC / Q9JMA2 Heterodimeric tRNA-guanine transglycosylase from mouse (see paper) 55% identity, 97% coverage&def2=7b2iC%20/%20Q9JMA2&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::7b2iC)

Ligand: zinc ion (7b2iC) 6h62A / Q9JMA2 Qtrt1, the catalytic subunit of murine tRNA-guanine transglycosylase (see paper) 52% identity, 97% coverage&def2=6h62A%20/%20Q9JMA2&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::6h62A)

Ligand: zinc ion (6h62A) Q23623 Queuine tRNA-ribosyltransferase catalytic subunit from Caenorhabditis elegans 51% identity, 95% coverage&def2=Q23623&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q23623)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) NP_502268 Queuine tRNA-ribosyltransferase catalytic subunit from Caenorhabditis elegans 51% identity, 93% coverage&def2=NP_502268&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_502268.2)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package...” XP_656142 queuine tRNA-ribosyltransferase, putative from Entamoeba histolytica HM-1:IMSS 49% identity, 98% coverage&def2=XP_656142&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=XP_656142.1)

Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Sarid, Frontiers in cell and developmental biology 2022 “...TRM8 XP_656291 tRNA methyltransferase subunit TRM8 XP_649121 tRNA methyltransferase subunit TRM10 XP 650920 queuine tRNA-ribosyltransferase XP_656142 queuine tRNA-ribosyltransferase XP_652881 D-Tyr-tRNA (Tyr) deacylase (poss) XP_656041 Candidate tRNA:m5C MTases are highlighted in bold font. RNA-Mediated Silencing In order to achieve RNA-mediated silencing in E.histolytica , several methods are...” “...homolog of h QTRT1 and h QTRTD1 exists in E. histolytica , namely Eh QTRT1 (XP_656142.1) and Eh QTRTD1 (XP_652881.1). E.histolytica tRNA-guanine transglycosylase (TGT) is a heterodimer composed of Eh QTRT1 and Eh QTRTD1 ( Nagaraja et al., 2021 ). EhTGT is catalytically active and it...” XP_006510587 queuine tRNA-ribosyltransferase catalytic subunit 1 isoform X2 from Mus musculus 62% identity, 67% coverage&def2=XP_006510587&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=XP_006510587.1)

Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase. Sebastiani, ACS chemical biology 2022 (PubMed) GeneRIF: Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase. Q8GAA6 Queuine tRNA-ribosyltransferase from Synechococcus elongatus (strain ATCC 33912 / PCC 7942 / FACHB-805) 46% identity, 93% coverage&def2=Q8GAA6&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q8GAA6)

Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins Guerreiro, Molecular & cellular proteomics : MCP 2014 “...at UNIV OF CALIFORNIA on August 13, 2019 Q31LD0 Q8GAA6 Q31P93 Q31NG2 Q31KC4 Q31SA6 Q31PT9 Q31N33 Q31QG0 Q31ME3 Q31KI8 Q31RN5 Q31KQ3 Q31R35 Q31LF7 Q31RH5 Q31LE3...” CD2802 queuine tRNA-ribosyltransferase (RefSeq) from Clostridium difficile 630 44% identity, 93% coverage&def2=CD2802&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS3375287)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) tgt / Q183P1 preQ1 tRNA-ribosyltransferase (EC 2.4.2.29) from Clostridioides difficile (strain 630) (see paper) 44% identity, 93% coverage&def2=tgt%20/%20Q183P1&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=metacyc::G12WB-2962-MONOMER)

SAR1719 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus MRSA252 P66905 Queuine tRNA-ribosyltransferase from Staphylococcus aureus (strain N315) Q2FXT6 Queuine tRNA-ribosyltransferase from Staphylococcus aureus (strain NCTC 8325 / PS 47) SA1465 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus N315 SAOUHSC_01748 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus NCTC 8325 SAUSA300_1595 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus USA300_FPR3757 USA300HOU_1638 queuine tRNA-ribosyltransferase (RefSeq) from Staphylococcus aureus subsp. aureus USA300_TCH1516 SACOL1694 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus COL CR496_01541 tRNA guanosine(34) transglycosylase Tgt from Staphylococcus aureus 44% identity, 93% coverage&def2=SAR1719&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS667021)

Extensive re-modelling of the cell wall during the development ofStaphylococcus aureusbacteraemia Douglas, 2023 The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications Kenny, PloS one 2009 “...trmD putative tRNA (guanine-7-)-methyltransferase 2.80 1.69E-03 SAR1485 rpsA putative 30S ribosomal protein S1 2.91 4.91E-02 SAR1719 tgt queuine tRNA-ribosyltransferase 2.01 4.96E-02 SAR1720 queA S-adenosylmethionine:tRNA ribosyltransferase-isomerase 2.49 1.44E-02 SAR2309 rpoA DNA-directed RNA polymerase subunit alpha 2.44 9.73E-03 Peptidoglycan Synthesis SAR1048 purD putative phosphoribosylamineglycine ligase 3.98 2.08E-02 SAR1762...” Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells. Groehler, Chemical research in toxicology 2016 “...3 4 Inflammatory Response 10835.0 81 P06702 Protein S100 A9 45 4 6 13242.3 82 P66905 Hemoglobin subunit alpha 22 2 3 Oxygen Transport 15257.6 83 Q13765 Nascent polypeptide-associated complex subunit alpha 26 4 5 Protein Transport 23383.3 84 Q96FZ7 Charged multivesicular body protein 6 10...” Antibacterial Activity of Juglone against Staphylococcus aureus: From Apparent to Proteomic. Wang, International journal of molecular sciences 2016 “...4 4 50.20 0.761 0.022 Q2G1X5 queuosine biosynthesis protein SAOUHSC_00720 3 3 16.00 0.831 0.000 Q2FXT6 queuine tRNA-ribosyltransferase tgt 2 2 43.30 0.603 0.008 Protein synthesis Q2FW17 50s ribosomal protein l24 rplX 2 2 11.50 1.225 0.001 Q2FW29 50s ribosomal protein l36 rpmJ 1 1 4.30...” Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover Anderson, FEMS immunology and medical microbiology 2010 “...2.5 SA1394 hypothetical protein sa_c2050s1762_a_at 3.6 2.5 2.5 SA1464 hypothetical protein sa_c2054s1766_a_at 3.0 2.5 2.5 SA1465 hypothetical protein sa_c2058s1770_at 2.1 2.5 2.5 SA1466 hypothetical protein sa_c2063s1774_a_at 3.4 2.5 2.5 SA1467 hypothetical protein sa_c2066s1777_a_at 36.6 2.5 ND SA1468 hypothetical protein sa_c2109s1814_a_at 29.3 2.5 ND SA1481...” Twenty-seven-nucleotide repeat insertion in the rplV gene confers specific resistance to macrolide antibiotics in Staphylococcus aureus Han, Oncotarget 2018 “...L SAOUHSC_01583 conserved hypothetical phage protein 1508580 of CP000253.1 C 530 G A 177 G SAOUHSC_01748 queuine tRNA-ribosyltransferase 1653225 of CP000253.1 A 184 G R 62 G SAOUHSC_02163 conserved hypothetical phage protein 2031924 of CP000253.1 G to A SAOUHSC_R0005 16S ribosomal RNA 2243146 of CP000253.1 A...” Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Genetic Factors Involved in Human Endothelial Cells Damage, an Important Phenotype Correlated with Persistent Endovascular Infection Xiao, Antibiotics (Basel, Switzerland) 2022 “...hypothetical protein 20.82 4.02 SAUSA300_0141 deoB phosphopentomutase 20.69 9.71 SAUSA300_1684 hypothetical hypothetical protein 20.53 11.18 SAUSA300_1595 tgt queuine tRNA-ribosyltransferase 20.53 9.07 SAUSA300_0442 hypothetical hypothetical protein 20.45 3.70 SAUSA300_0744 lgt prolipoprotein diacylglyceryl transferase 20.44 5.61 SAUSA300_1576 recD2 helicase, RecD/TraA family 20.41 6.63 SAUSA300_2088 luxS S-ribosylhomocysteinase 20.40 2.33...” Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress Imber, Antioxidants & redox signaling 2018 “...USA300HOU_1732 pheT2 Phenylalanine-tRNA ligase beta subunit Cys167 a B 2.0 13.79 12.38 0.29 26.17 0.05 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys12 a B 15.2 12.73 9.32 0.07 22.04 0.42 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys281 a B 2.5 18.74 13.36 0.25 32.10 0.14 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys174...” Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus Howden, Antimicrobial agents and chemotherapy 2008 “...h in BHIB with increasing concen- 2.2-kb product, SACOL1694 1-kb product, SACOL2314 1.3-kb product, SACOL2600 582-bp product, intergenic region To generate an...” “...A SACOL0971 rexA, exonuclease Synonymous T to A SACOL1694 tgt, queuine tRNAribosyltransferase F365Y C to T SACOL2314 Sodium/bile acid symporter family protein...” Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis Suligoy, Frontiers in cellular and infection microbiology 2018 “...? Hypothetical protein snp Synonymous variant Unknown CR496_00965 atl Bifunctional autolysin snp Missense variant Hydrolase CR496_01541 tgt Queuine tRNA-ribosyltransferase ins Frameshift variant tRNA Modification CR496_01829 pfbA Plasmin and fibronectin-binding protein A snp Synonymous variant Fibronectin binding protein CR496_01861 mepM Murein DD-endopeptidase MepM snp Missense variant Metal...” SAA6008_01608 tRNA guanosine(34) transglycosylase Tgt from Staphylococcus aureus subsp. aureus str. JKD6008 44% identity, 93% coverage&def2=SAA6008_01608&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_001112046.1)

Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR Howden, PLoS pathogens 2011 “...A (976097) SAA6008_00920 addA ATP-dependent nuclease subunit A Silent 5 a T to A (1721456) SAA6008_01608 tgt Queuine tRNA-ribosyltransferase F365Y 6 C to T (2391832) Intergenic 7 a C to T (2470905) SAA6008_02357 Sodium/bile acid symporter family protein P128S. 8 a G to A (2754296) SAA6008_02622...” SERP1203 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus epidermidis RP62A 44% identity, 93% coverage&def2=SERP1203&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS915439)

Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis Gonçalves, Frontiers in microbiology 2022 “...Staphylococcal Accessory Regulator family SERP1849/76/79 SarR/Z/V t-RNA modification NADPH-dependent 7-cyano-7-deazaguanine reductase SERP0394 queF Queuine trna-ribosyltransferase SERP1203 tgt Epoxyqueuosine reductase QueH SERP2147 queH tRNA (guanine-N(1)-)-methyltransferase SERP0806 trmD S. epidermidis metabolic and biological activities induced at skin pH Promotion of bacterial growth We found that S. epidermidis 19N...” Q71ZE0 Queuine tRNA-ribosyltransferase from Listeria monocytogenes serotype 4b (strain F2365) 42% identity, 94% coverage&def2=Q71ZE0&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q71ZE0)

Proteomic Exploration of Listeria monocytogenes for the Purpose of Vaccine Designing Using a Reverse Vaccinology Approach Srivastava, International journal of peptide research and therapeutics 2021 “...0.551 Non-allergen 6 Q71Y34 0.54 Non-allergen 7 Q71XR2 0.4524 Non-allergen 8 Q71VT6 0.4088 Non-allergen 9 Q71ZE0 1.318 Non-allergen 10 Q71XX6 1.042 Non-allergen 11 Q71Y46 0.679 Non-allergen 12 Q71WT3 0.482 Non-allergen 13 Q71WP0 1.372 Non-allergen 14 Q720A5 0.44 Non-allergen 15 Q71WP7 0.675 Non-allergen 16 Q71WT2 0.574 Non-allergen...” “...DRB1_0101 AIFIRAPYL 886.2 1.4467 Antigen DRB1_1301 LAFKVKHSS 48.5 1.2632 Antigen DRB1_1301 IFIRAPYLI 62.4 1.6671 Antigen Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen DRB1_0701 FDCVLPTRI 25.3 1.5369 Antigen DRB1_0701 CEETFGIRL 66 2.4185 Antigen Q71XX6 DRB1_0701 FKATGGKRI 25.8 1.4894 Antigen DRB1_1301 VILQVFYFK 63.3...” BSU27710 tRNA-guanine transglycosylase from Bacillus subtilis subsp. subtilis str. 168 NP_390649 queuine tRNA-ribosyltransferase (RefSeq) from Bacillus subtilis subsp. subtilis str. 168 42% identity, 95% coverage&def2=BSU27710&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_390649.1)

A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century Bremer, Microbial biotechnology 2023 “...specific adenosine A34 deaminase 3.5.4.33 BSU27540 tcdA yrvM, csdL tRNA threonylcarbamoyladenosine dehydratase (t(6)A37 dehydratase) 6.1.. BSU27710 tgt _ tRNAguanine transglycosylase 2.4.2.29 BSU00670 tilS yacA, mesJ tRNA(ile2) lysidine synthetase 6.3.4.19 BSU15060 tmcAL ylbM N4acetylcytidine tRNA C34 acetylase (acetyladenylate synthase) 2.3.1.193 BSU02330 trhO ybfQ tRNA uridine(34) hydroxylase 1.14.....” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...E. coli , AAA24667; Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster...” LSA0377 Queuine tRNA-ribosyltransferase (NCBI) from Lactobacillus sakei subsp. sakei 23K 40% identity, 94% coverage&def2=LSA0377&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS1099338)

Global transcriptome response in Lactobacillus sakei during growth on ribose McLeod, BMC microbiology 2011 “...rplB 50S ribosomal protein L2 0.6 LSA1765 rpsJ 30S ribosomal protein S10 -0.7 Protein synthesis LSA0377 tgt Queuine tRNA-ribosyltransferase -0.6 LSA1546 gatB Glutamyl-tRNA amidotransferase, subunit B -0.5 LSA1547 gatA Glutamyl-tRNA amidotransferase, subunit A -0.5 -0.5 RNA restriction and modification LSA0437 lsa0437 Hypothetical protein with an RNA-binding...” Q55983 Queuine tRNA-ribosyltransferase from Synechocystis sp. (strain PCC 6803 / Kazusa) 43% identity, 91% coverage&def2=Q55983&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q55983)

Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Edelstein, Proceedings of the National Academy of Sciences of the United States of America 1999 SPD_1868 queuine tRNA-ribosyltransferase (NCBI) from Streptococcus pneumoniae D39 41% identity, 93% coverage&def2=SPD_1868&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS2018704)

Pivotal Roles for Ribonucleases in Streptococcus pneumoniae Pathogenesis Sinha, mBio 2021 “...c bguC PTS system, IIA component 2.40 4.46E07 SPD_1865 Putative Zn-dependent alcohol dehydrogenase 2.12 7.51E05 SPD_1868 tgt tRNA-guanine transglycosylase 2.05 1.34E05 SPD_1899 Glutamine amidotransferase, class 1 2.45 3.28E04 SPD_1910 h pstS1 Phosphate ABC transporter periplasmic-phosphate-binding protein PstS1 3.87 5.51E08 SPD_1911 h pstC1 Phosphate transport system permease...” llmg_0164 queuine tRNA-ribosyltransferase (NCBI) from Lactococcus lactis subsp. cremoris MG1363 41% identity, 93% coverage&def2=llmg_0164&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS2125616)

Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR Pinto, PloS one 2011 “...glycosyl transferase, being regulated by CesRS. The genes ftsH ( llmg_0021 ) and tgt ( llmg_0164 ), both of which contain a putative CesR motif in their promoter region, were up-regulated in our study and are therefore likely members of the regulon. Also, our data indicates...” SPO2616 tRNA guanosine(34) transglycosylase Tgt from Ruegeria pomeroyi DSS-3 41% identity, 93% coverage&def2=SPO2616&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_011048318.1)

Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium Chan, Frontiers in microbiology 2012 “...racemase/muconate lactonizing enzyme family protein 0.3 SPO2556 Allantoate amidohydrolase 0.2 SPO2592 Beta-lactamase, putative 1.0 0.3 SPO2616 tgt Queuine tRNA-ribosyltransferase 0.7 0.3 SPO3012 Inositol-1-monophosphatase, putative 0.1 0.2 SPO3156 l -threonine aldolase, low-specificity, putative 1.3 0.3 SPO3419 UbiH/UbiF/VisC/COQ6 family ubiquinone biosynthesis hydroxylase 1.9 0.3 SPO3437 Mechanosensitive ion channel...” YP_003432953 queuine tRNA-ribosyltransferase (RefSeq) from Hydrogenobacter thermophilus TK-6 42% identity, 91% coverage&def2=YP_003432953&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS10377051)

Phylogenetic position of aquificales based on the whole genome sequences of six aquificales species Oshima, International journal of evolutionary biology 2012 “...putative metalloprotease YP_003431749 diaminopimelate decarboxylase YP_003431809 dihydrodipicolinate reductase YP_003431998 UDP-N-acetylglucosamine 1-carboxyvinyltransferase YP_003432481 ribosomal protein S20 YP_003432953 queuine tRNA-ribosyltransferase YP_003431834 ATP-dependent protease La YP_003431839 tRNA delta(2)-isopentenylpyrophosphate transferase YP_003431873 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase YP_003431915 ribonuclease III YP_003432036 riboflavin synthase alpha chain YP_003432044 DNA polymerase I YP_003432149 2-methylthioadenine synthetase YP_003432165...” NP_213895 queuine tRNA-ribosyltransferase (NCBI ptt file) from Aquifex aeolicus VF5 41% identity, 91% coverage&def2=NP_213895&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS25203)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus...” WP_050720655 tRNA guanosine(34) transglycosylase Tgt from Zymomonas mobilis 41% identity, 92% coverage&def2=WP_050720655&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_050720655.1)

The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. Nguyen, ACS chemical biology 2020 (PubMed) GeneRIF: The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. TGT_ZYMMO / P28720 Queuine tRNA-ribosyltransferase; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.29 from Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) (see 11 papers) P28720 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Zymomonas mobilis (see 11 papers) 41% identity, 92% coverage&def2=TGT_ZYMMO%20/%20P28720&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=P28720)

function: Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form the product. After dissociation, two additional enzymatic reactions on the tRNA convert PreQ1 to queuine (Q), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2-cyclopenten-1- yl)amino)methyl)-7-deazaguanosine). catalytic activity: 7-aminomethyl-7-carbaguanine + guanosine(34) in tRNA = 7- aminomethyl-7-carbaguanosine(34) in tRNA + guanine (RHEA:24104) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Homodimer. Within each dimer, one monomer is responsible for RNA recognition and catalysis, while the other monomer binds to the replacement base PreQ1. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Johannsson, Biomolecules 2018 “...TGT and mouse QTRT2 have been aligned to the sequence of human QTRT1 (UniProtKB entries P28720 B8ZXI1 and Q9BXR0) using T-Coffee. References 1. Boccaletto P. Machnicka M.A. Purta E. Pitkowski P. Bagiski B. Wirecki T.K. de Crcy-Lagard V. Ross R. Limbach P.A. Kotter A. MODOMICS: A...” NGFG_00439 tRNA guanosine(34) transglycosylase Tgt from Neisseria gonorrhoeae MS11 44% identity, 89% coverage&def2=NGFG_00439&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_003687675.1)

Transcriptional landscape and essential genes of Neisseria gonorrhoeae Remmele, Nucleic acids research 2014 “...the third cluster of 5 genes includes ComEA proteins and a loosely linked queuine tRNA-ribosyltransferase (NGFG_00439). The remaining network clusters into small components of promoter pairs and triplets. Identification of essential genes To define the core of essential genes in GC we established a genome-wide random...” BMI_I1103 queuine tRNA-ribosyltransferase (RefSeq) from Brucella microti CCM 4915 BMEI0890 QUEUINE TRNA-RIBOSYLTRANSFERASE (NCBI ptt file) from Brucella melitensis 16M BME_RS04435 tRNA guanosine(34) transglycosylase Tgt from Brucella melitensis bv. 1 str. 16M 42% identity, 93% coverage&def2=BMI_I1103&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS7629720)

Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis Ouahrani-Bettache, Virulence 2019 “...mutations were intragenic and affected the following genes: BMI_I525 (2 SNVs), BMI_I539 (1 InDel) and BMI_I1103 (1 SNV), encoding a transposase (ISBm1), a glycosyltransferase ( wbkE ) and a queuine tRNA-ribosyltransferase ( tgt ), respectively. The mutation found in wbkE was regarded as the most plausible...” Ultrasensitive Detection of Pathogenic Bacteria by Targeting High Copy Signature Genes Dong, Frontiers in veterinary science 2022 “...tu (refseq) BMEI0755 1,176 1,176 2 I + 786042 787217 Protein translation elongation factor tu BMEI0890 1,134 1,134 2 I + 921879 923012 Queuine trna-ribosyltransferase BMEI0902 231 231 2 I + 935275 935505 Recombinase BMEI0903 1,344 1,344 2 I + 935903 937246 Hypothetical protein BMEI0904 246...” Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions Rossetti, Frontiers in microbiology 2017 “...kinase 3 Yes BSS MAPK, GnRH, Toll-like receptor, Fc epsilon RI signaling, Integrin-mediated cell adhesion BMEI0890 (BME_RS04435, tgt) tRNA guanosine transglycosylase 0.159 RAP1A RAP1A, member of RAS oncogene family No BSS MAPK, Integrin-mediated cell adhesion, Leukocyte transendothelial migration BMEI1077 (BME_RS05395) Immunogenic membrane protein YajC 0.206 NRAS...” Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions Rossetti, Frontiers in microbiology 2017 “...3 Yes BSS MAPK, GnRH, Toll-like receptor, Fc epsilon RI signaling, Integrin-mediated cell adhesion BMEI0890 (BME_RS04435, tgt) tRNA guanosine transglycosylase 0.159 RAP1A RAP1A, member of RAS oncogene family No BSS MAPK, Integrin-mediated cell adhesion, Leukocyte transendothelial migration BMEI1077 (BME_RS05395) Immunogenic membrane protein YajC 0.206 NRAS Neuroblastoma...” BAB1_1115 Queuine/other tRNA-ribosyltransferase:Queuine tRNA-ribosyltransferase (NCBI) from Brucella melitensis biovar Abortus 2308 BS1330_I1087 tRNA guanosine(34) transglycosylase Tgt from Brucella suis 1330 42% identity, 93% coverage&def2=BAB1_1115&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS1053889)

Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Sternon, Infection and immunity 2018 “...BAB1_1399 BAB1_0096 BAB1_2158 BAB1_1437 BAB1_0162 BAB1_2025 BAB1_1115 BAB1_0477 BAB1_0427 Nucleic acid synthesis and degradation BAB2_0641 BAB2_0640 BAB1_0341...” Comparative genomic analysis between newly sequenced Brucella suis Vaccine Strain S2 and the Virulent Brucella suis Strain 1330 Di, BMC genomics 2016 “...1 b A IS711, transposase orfA 29 BS1330_I1083 1 b P luciferase family protein 30 BS1330_I1087 1 b E tgt 31 BS1330_I1302 1 b I cob N 32 BS1330_I1971 1 b L short chain dehydrogenase 33 BS1330_I2107 1 b I hypothetical protein 34 BS1330_II0476 78 pyridine...” NGO0294 putative queuine tRNA-ribosyltransferase (NCBI) from Neisseria gonorrhoeae FA 1090 43% identity, 89% coverage&def2=NGO0294&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS818516)

Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance Ezewudo, PeerJ 2015 “...NGO1847 Hypothetical protein 5 NGO1948 ComA 5 NGO0276 Chaperone protein HscA 5 NGO0829 tRNA-ribosyltransferase 5 NGO0294 RNA polymerase Subunit 5 NGO1850 ArsR family transcriptional regulator 5 NGO1562 Hypothetical protein 5 NGO0165 PriB 5 NGO0582 ABC transporter subunit 3 NGO2088 Hypothetical protein 3 NGO1984 tRNA pseudouridine synthase...” HP0281 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Helicobacter pylori 26695 40% identity, 91% coverage&def2=HP0281&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS18701)

Genomic differentiation within East Asian Helicobacter pylori. You, Microbial genomics 2022 “...Vitamin B5 synthesis Interaction between cleaved peptides bioD HP0029 Micronutrient synthesis Vitamin B7 synthesis tgt HP0281 S4A (iii) Micronutrient synthesis Q-base synthesis; Q-base on tRNA affects translation accuracy Active site rhoD HP1223 S4B Detox Rhodanese detoxifying cyanide generated in microbiome rkiP HP0218 S2B Oncoprotein Mimic of...” Metabolism and genetics of Helicobacter pylori: the genome era Marais, Microbiology and molecular biology reviews : MMBR 1999 “...queA HP1513 HP1148 HP1415 selA trmD miaA HP0281 tgt Methionyl-tRNA formyltransferase Peptidyl-tRNA hydrolase Pseudouridylate synthase I Protein component of...” SMc01206 PROBABLE QUEUINE TRNA-RIBOSYLTRANSFERASE (TRNA-GUANINE TRANSGLYCOSYLASE) PROTEIN (NCBI ptt file) from Sinorhizobium meliloti 1021 41% identity, 93% coverage&def2=SMc01206&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS124261)

Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula Marchetti, PloS one 2013 “...additional genes belonging to this pathway ( Fig. 4 ) we identified queF (SMc02723), tgt (SMc01206) and queA (SMc01207) genes on the S. meliloti main chromosome. These genes were individually inactivated and corresponding mutants triggered reduced HeLa cell deformations 48 hpi in regular HeLa culture medium...”

ACIAD0590 queuine tRNA-ribosyltransferase (RefSeq) from Acinetobacter sp. ADP1 41% identity, 89% coverage&def2=ACIAD0590&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS588069)

iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources Jiang, Frontiers in microbiology 2019 “...0.63 DNA-directed RNA polymerase subunit beta rpoB ACIAD0307 0.49 0.72 0.55 0.58 Queuine tRNA-ribosyltransferase tgt ACIAD0590 0.59 0.74 0.58 0.67 UDP- N -acetylglucosamine 1-carboxyvinyltransferase 2 murA ACIAD0660 0.81 0.74 0.8 0.74 Gamma-glutamyltranspeptidase precursor ggt ACIAD0929 0.34 0.77 0.5 0.41 Bifunctional succinylornithine transaminase/acetylornithine transaminase argD ACIAD1284 0.4...” 7a4kA / P28720 tRNA-guanine transglycosylase c158s/c281s/y330c/h333a mutant in complex with tetramethylene sulfoxide (see paper) 41% identity, 92% coverage&def2=7a4kA%20/%20P28720&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::7a4kA)

Ligands: zinc ion; thiolane 1-oxide (7a4kA) APL_0723 queuine tRNA-ribosyltransferase (NCBI) from Actinobacillus pleuropneumoniae L20 43% identity, 88% coverage&def2=APL_0723&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS2124067)

Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential Klitgaard, BMC genomics 2010 “...of murein hydrolase LrgA R -1.11 APL_0779 - Putative effector of murein hydrolase M -0.90 APL_0723 tgt Queuine tRNA-ribosyltransferase J -0.15 APL_0689 + torY Cytochrome c-type protein C -2.30 APL_0688 + torZ Trimethylamine-N-oxide reductase precursor C -1.61 APL_0607 + nfnB Putative NAD(P)H nitroreductase C -0.54 APL_0446...” Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae Labrie, Veterinary research 2010 “...pseudouridine synthase B 1.742 APL_1383 trmB tRNA (guanine-N(7)-)-methyltransferase 1.756 APL_0574 APL_0574 tRNA-specific adenosine deaminase 1.778 APL_0723 Tgt Queuine tRNA-ribosyltransferase 1.937 Purines, pyrimidines, nucleosides, and nucleotides APL_0958 purH Bifunctional purine biosynthesis protein PurH 1.856 APL_0593 guaB Inosine-5-monophosphate dehydrogenase 1.485 APL_1343 Cdd Cytidine deaminase 1.278 APL_1014 deoD Purine...” VFMJ11_2103 queuine tRNA-ribosyltransferase (RefSeq) from Vibrio fischeri MJ11 VFMJ11_2103 tRNA guanosine(34) transglycosylase Tgt from Aliivibrio fischeri MJ11 42% identity, 88% coverage&def2=VFMJ11_2103&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS7071551)

Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. Sabrina, eLife 2017 “...1.0 10.90 0.0335 Nitrate reductase catalytic subunit NapA VFMJ11_2045 1.1 5.71 0.0078 0.5 5.85 0.4159 VFMJ11_2103 0.9 9.12 0.0017 0.6 8.78 0.2201 Queuine tRNA-ribosyltransferase tgt VFMJ11_2111 1.5 3.60 0.0002 1.0 3.74 0.2591 Protein YgiW VFMJ11_2127 1.0 9.24 0.0018 0.7 8.93 0.1727 Peptidase U32 VFMJ11_2165 1.2 4.76...” H375_8000 tRNA guanosine(34) transglycosylase Tgt from Rickettsia prowazekii str. Breinl 41% identity, 88% coverage&def2=H375_8000&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_010886359.1)

Transcriptional profiling of Rickettsia prowazekii coding and non-coding transcripts during in vitro host-pathogen and vector-pathogen interactions Schroeder, Ticks and tick-borne diseases 2017 “...protein H375_3930 3.74 hypothetical protein H375_2360 3.73 RalF protein H375_2200 3.72 rare lipoprotein A precursor H375_8000 3.71 tRNA-guanine transglycosylase H375_1890 3.71 hypothetical protein H375_7280 3.65 NADH-ubiquinone oxidoreductase chain I H375_4740 3.65 Aspartyl-tRNA(Asn) amidotransferase subunit C H375_4180 3.65 Chaperone protein HscB H375_7380 6.96 hypothetical protein H375_6130 6.52...” XHV734_1945 tRNA guanosine(34) transglycosylase Tgt from Xanthomonas hortorum pv. vitians 42% identity, 91% coverage&def2=XHV734_1945&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_187433825.1)

A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians Morinière, mSystems 2022 “...trpA Tryptophan synthase alpha chain Psyr_0033 RS_RS09955 ATU_RS00095 XHV734_1808 purK N5-carboxyaminoimidazole ribonucleotide synthase ATU_RS17455 Dda3937_01683 XHV734_1945 tgt tRNA-guanine transglycosylase RS_RS13575 XHV734_1977 gdh NAD-specific glutamate dehydrogenase ATU_RS13460 XHV734_2148 purM Phosphoribosylaminoimidazole synthetase ATU_RS05630 Dda3937_02515 XHV734_2154 sodA Superoxide dismutase, Mn ATU_RS04315 XHV734_2180 Dihydroorotase ATU_RS06435 XHV734_2250 UDP- N -acetylmuramyl pentapeptide...” tgt / AAA24667.1 transfer RNA-guanine transglycosylase from Escherichia coli (see paper) 42% identity, 89% coverage&def2=tgt%20/%20AAA24667.1&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=ENA::AAA24667.1)

HI0244 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Haemophilus influenzae Rd KW20 43% identity, 89% coverage&def2=HI0244&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS6603)

The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon Whitby, BMC genomics 2009 “...30.77 HI0206 -2.25 -2.18 -2.09 -4.89 -1.60 -2.53 HI0230 2.91 5.42 2.51 3.10 2.31 2.67 HI0244 2.59 10.47 1.87 3.13 2.30 4.51 HI0251 -1.99 1.18 -1.69 -3.12 -2.75 -1.16 HI0252 -2.45 1.15 -1.87 -3.90 -3.02 -2.56 HI0257 -2.27 -5.52 -1.52 -8.86 -1.61 -2.32 HI0262 -24.69 -13.38...” Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae Gladitz, Nucleic acids research 2005 “...DNA helicase (ruvB) HI0312 43 336 33.63 HFRD 0 64.1 RNA,tRNA modifying tRNA-guanine transglycosylase (tgt) HI0244 41 383 32 HFRD 0 42.85 rRNAmethylase-putative HI0766 39 161 40.92 HFRD 0 51.13 Pseudouridylate synthase I (truA) HI1644 41 270 35.53 HFRD 0 70.83 Translation Polypeptide deformylase (def) HI0622...” Initial proteome analysis of model microorganism Haemophilus influenzae strain Rd KW20 Kolker, Journal of bacteriology 2003 “...and rRNA-modifying enzymes, only tRNA-guanine transglycosylase (HI0244) was detected with high confidence. DNA replication, repair, and transcription. Although...” Q54177 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Shigella flexneri (see paper) NP_706294 queuine tRNA-ribosyltransferase (tRNA-guanine transglycosylase) (Guanine insertion enzyme) (Virulence-associated protein VACC) (NCBI ptt file) from Shigella flexneri 2a str. 301 42% identity, 89% coverage&def2=Q54177&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q54177)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Novel genomic island modifies DNA with 7-deazaguanine derivatives Thiaville, Proceedings of the National Academy of Sciences of the United States of America 2016 “...Z. mobilis bTGT, Q8GM47; Shigella flexneri bTGT, Q54177; Bacillus subtilis bTGT, L8AMH3; Aquifex aeolicus bTGT, O67331; P. horikoshii aTGT, O58843;...” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...following accession numbers ( E. coli , AAA24667; Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans...” Tgt tRNA-guanine transglycosylase (EC 2.4.2.29) from Escherichia coli K-12 substr. MG1655 (see 6 papers) TGT_ECOLI / P0A847 Queuine tRNA-ribosyltransferase; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.29 from Escherichia coli (strain K12) (see 3 papers) P0A847 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Escherichia coli (see paper) tgt / P0A847 tRNA-guanine transglycosylase (EC 2.4.2.29) from Escherichia coli (strain K12) (see 4 papers) NP_414940 tRNA-guanine transglycosylase from Escherichia coli str. K-12 substr. MG1655 b0406 queuine tRNA-ribosyltransferase (NCBI) from Escherichia coli str. K-12 substr. MG1655 42% identity, 89% coverage&def2=Tgt&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=P0A847)

function: Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form the product. After dissociation, two additional enzymatic reactions on the tRNA convert PreQ1 to queuine (Q), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2-cyclopenten-1- yl)amino)methyl)-7-deazaguanosine). catalytic activity: 7-aminomethyl-7-carbaguanine + guanosine(34) in tRNA = 7- aminomethyl-7-carbaguanosine(34) in tRNA + guanine (RHEA:24104) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Homodimer. Within each dimer, one monomer is responsible for RNA recognition and catalysis, while the other monomer binds to the replacement base PreQ1. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Novel genomic island modifies DNA with 7-deazaguanine derivatives Thiaville, Proceedings of the National Academy of Sciences of the United States of America 2016 “...H1RRG1; K. radiotolerans TgtA5, A6WGA1; E. coli bTGT, P0A847; Z. mobilis bTGT, Q8GM47; Shigella flexneri bTGT, Q54177; Bacillus subtilis bTGT, L8AMH3; Aquifex...” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Chen, Nucleic acids research 2011 GeneRIF: phylogenetic and kinetic analyses support the conclusion that all tRNA-guanine transglycosylases have divergently evolved to specifically recognize their cognate heterocyclic substrates. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Eric, Biochemical and biophysical research communications 2011 GeneRIF: mutation of key residues in the E. coli TGT active site can ''open up'' the site to allow for the binding of competitive pteridine inhibitors. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity. Todorov, Biochemistry 2006 GeneRIF: The key role of aspartate 143 in maintaining the anticodon identities of TGT queuine-containing tRNAs is confirmed. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure. Garcia, Journal of molecular biology 1993 (PubMed) GeneRIF: N-terminus verified by Edman degradation on complete protein 5-azacytidine induces transcriptome changes in Escherichia coli via DNA methylation-dependent and DNA methylation-independent mechanisms Militello, BMC microbiology 2016 “...ribosomal subunit protein S9 1.77 3.95E-04 b3739 atpI ATP synthase, membrane-bound accessory factor 1.68 7.67E-04 b0406 tgt tRNA-guanine transglycosylase; queuosine biosynthesis; zinc metalloprotein 1.66 1.97E-03 b3735 atpH ATP synthase subunit delta, membrane-bound, F1 sector 1.66 1.70E-03 b4200 rpsF 30S ribosomal subunit protein S6; suppressor of dnaG-Ts...” Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification Miles, Proceedings of the National Academy of Sciences of the United States of America 2011 “...(b2777), preQ0 synthethase (b0444), preQ0 reductase (b2794), and Tgt (b0406) lead to disappearance of both Q and oQ from RNA. GCH I is an essential gene for...” Microarray analysis of orthologous genes: conservation of the translational machinery across species at the sequence and expression level Jiménez, Genome biology 2003 “...and protein export b0405 No COG0809 J S -adenosylmethionine:tRNA ribosyltransferase-isomerase tRNA modification and protein export b0406 No COG0343 J Queuine tRNA-ribosyltransferase tRNA modification and protein export b0407 No COG1862 N ORF, hypothetical protein tRNA modification and protein export b0408 No COG0342 N Protein-export membrane protein SecD...” SO3113 queuine tRNA-ribosyltransferase (NCBI ptt file) from Shewanella oneidensis MR-1 43% identity, 88% coverage&def2=SO3113&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS202229)

Stress responses of shewanella Yin, International journal of microbiology 2011 “...hypothetical protein 44 16 CTAGGCATTTGAGTTGGAACCCTATTTTT 9.1 SO4287 motA chemotaxis motA protein 127 99 CTTGAATTTAGTAGATTTTCCTTATAATG 9.1 SO3113 tgt queuine tRNA-ribosyltransferase 96 67 GTTGAACCTTTTAGATCTGTCCCTATCTCT 9 Genome screening with 32 weight matrix is performed using RSAT at http://rsat.ulb.ac.be/rsat/RSAT_home.cgi [ 23 ]. Genes with a weight score over 9 are...” CC1588 queuine tRNA ribosyltransferase (NCBI ptt file) from Caulobacter crescentus CB15 41% identity, 91% coverage&def2=CC1588&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS98409)

Identification of long intergenic repeat sequences associated with DNA methylation sites in Caulobacter crescentus and other alpha-proteobacteria Chen, Journal of bacteriology 2003 “...2876431 3116816 . . . 3116931 3857996 . . . 3858111 CC1588 CC1982 CC2078 CC2187 CC2658 CC2893 CC3604 1 1 1 1 14 17 1 CC1589 CC1983 CC2079 CC2188 CC2659 CC2894...” SEN0388 queuine tRNA-ribosyltransferase; tRNA-guanine transglycosylase (RefSeq) from Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 41% identity, 89% coverage&def2=SEN0388&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS5795126)

Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis Fong, Microbial genomics 2023 Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and Global Epidemic pathovariants of Salmonella Enteritidis Fong, 2022 STM0405 tRNA-guanine transglycosylase (NCBI ptt file) from Salmonella typhimurium LT2 41% identity, 89% coverage&def2=STM0405&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS147781)

Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis Fong, Microbial genomics 2023 Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and Global Epidemic pathovariants of Salmonella Enteritidis Fong, 2022 PXO_00525 queuine tRNA-ribosyltransferase (RefSeq) from Xanthomonas oryzae pv. oryzae PXO99A 42% identity, 91% coverage&def2=PXO_00525&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS5514016)

Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis Park, The plant pathology journal 2016 “...other group J (translation, ribosomal structure and biogenesis) 188577392 PXO_01601 Glutathione synthetase 1.56 H 188576286 PXO_00525 Queuine tRNA-ribosyltransferase 188578674 PXO_03147 ATP-dependent RNA helicase 1.75 L, K K (transcription) 188578888 PXO_02929 Chromosome partitioning protein 1.63 188577000 PXO_06209 RNA polymerase sigma factor FliA N (cell motility)...” RS_RS13575 tRNA guanosine(34) transglycosylase Tgt from Ralstonia nicotianae GMI1000 43% identity, 86% coverage&def2=RS_RS13575&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_011002620.1)

A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians Morinière, mSystems 2022 “...chain Psyr_0033 RS_RS09955 ATU_RS00095 XHV734_1808 purK N5-carboxyaminoimidazole ribonucleotide synthase ATU_RS17455 Dda3937_01683 XHV734_1945 tgt tRNA-guanine transglycosylase RS_RS13575 XHV734_1977 gdh NAD-specific glutamate dehydrogenase ATU_RS13460 XHV734_2148 purM Phosphoribosylaminoimidazole synthetase ATU_RS05630 Dda3937_02515 XHV734_2154 sodA Superoxide dismutase, Mn ATU_RS04315 XHV734_2180 Dihydroorotase ATU_RS06435 XHV734_2250 UDP- N -acetylmuramyl pentapeptide phosphotransferase/UDP- N -acetylglucosamine-1-phosphate transferase...” HSM_0302 tRNA guanosine(34) transglycosylase Tgt from Histophilus somni 2336 42% identity, 86% coverage&def2=HSM_0302&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_041605219.1)

Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336 Subhadra, PloS one 2023 “...310 Y Y HSM_0292 HSM_0293 D [ 8 ] HS27 325426 325495 70 Y - HSM_0302 HSM_0303 ND This work HS30 368822 369085 264 Y Y HSM_0336 HSM_0337 ND This work HS31 382931 383420 490 Y - HSM_0346 HSM_0347 A [ 8 ] HS32 385627 385785...” HSM_0302 queuine tRNA-ribosyltransferase (RefSeq) from Haemophilus somnus 2336 42% identity, 86% coverage&def2=HSM_0302&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS6797546)

Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336 Subhadra, PloS one 2023 “...310 Y Y HSM_0292 HSM_0293 D [ 8 ] HS27 325426 325495 70 Y - HSM_0302 HSM_0303 ND This work HS30 368822 369085 264 Y Y HSM_0336 HSM_0337 ND This work HS31 382931 383420 490 Y - HSM_0346 HSM_0347 A [ 8 ] HS32 385627 385785...” Cj1010 queuine tRNA-ribosyltransferase (NCBI ptt file) from Campylobacter jejuni subsp. jejuni NCTC 11168 41% identity, 88% coverage&def2=Cj1010&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS46889)

Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni Hwang, Journal of bacteriology 2012 “...Translation, ribosomal structure, and biogenesis tgt Cj1010 Queuine tRNA-ribosyltransferase -2.114 0.01636 valS Cj0775c Valyl-tRNA synthetase -2.732 0.017 greA...” 2ashA / Q9X1P7 Crystal structure of queuine tRNA-ribosyltransferase (ec 2.4.2.29) (tRNA-guanine (tm1561) from thermotoga maritima at 1.90 a resolution 41% identity, 89% coverage&def2=2ashA%20/%20Q9X1P7&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::2ashA)

Ligand: zinc ion (2ashA) XF0223 queuine tRNA-ribosyltransferase (RefSeq) from Xylella fastidiosa 9a5c 41% identity, 91% coverage&def2=XF0223&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS48937)

Xylella fastidiosa gene expression analysis by DNA microarrays Travensolo, Genetics and molecular biology 2009 “...synthetase 0.62 XF0169 tyrS Tyrosyl-tRNA synthetase 0.59 XF2178 holA DNA polymerase III, delta subunit -1.85 XF0223 tgt/vacC Queuine tRNA-ribosyltransferase -1.70 XF1909 mutY A/G-specific adenine glycosylase -1.23 XF2672 purE Phosphoribosylaminoimidazole carboxylase, catalytic subunit -1.10 XF0354 recG ATP-dependent DNA helicase -0.89 XF0676 holB DNA polymerase III, delta subunit...” PA3823 queuine tRNA-ribosyltransferase (NCBI) from Pseudomonas aeruginosa PAO1 39% identity, 96% coverage&def2=PA3823&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS60272)

Additive Effects of Quorum Sensing Anti-Activators on Pseudomonas aeruginosa Virulence Traits and Transcriptome Asfahl, Frontiers in microbiology 2017 “...protein PotC 2.0 NC NC NC PA3820 secF secretion protein SecF 2.5 NC NC NC PA3823 tgt queuine tRNA-ribosyltransferase 1.8 NC NC 1.8 PA3827 lptG Lipopolysaccharide export system permease protein LptG ( yjgQ ) 1.5 NC NC NC PA3979 hypothetical protein 1.6 NC NC NC PA4045...” Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence Lewenza, PeerJ 2014 “...mmsB PA3569 3-hydroxyisobutyrate dehydrogenase B 69_A6 Gene PA3747 PA3747 ABC-transport permease B 76_D11 Gene tgt PA3823 Queuine tRNA-ribosyltransferase A, C 50_D9 Gene pprB PA4296 Two-component response regulator A, B, C 17_B9 Gene PA4497 PA4497 Binding protein component of ABC transporter B 19_D2 Gene pilV PA4551 Type...” Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin Brazas, Antimicrobial agents and chemotherapy 2007 “...47_B5 75_F11 PA0393 PA0413 PA3115 PA3528 PA3761 PA3823 PA4556 PA4600 PA4695 PA5117 PA5455 proC Pyrroline-5-carboxylate reductase Probable chemotactic signal...” 4kwoA / P28720 tRNA guanine transglycosylase (tgt) in complex with furanoside-based lin-benzoguanine 3 (see paper) 39% identity, 92% coverage&def2=4kwoA%20/%20P28720&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::4kwoA)

Ligands: methyl 6-[6-amino-2-(methylamino)-8-oxo-7,8-dihydro-1h-imidazo[4,5-g]quinazolin-4-yl]-5,6-dideoxy-3-o-methyl-beta-d-ribo-hexofuranoside; zinc ion (4kwoA) B6XS84 Queuine tRNA-ribosyltransferase from Bifidobacterium catenulatum DSM 16992 = JCM 1194 = LMG 11043 35% identity, 78% coverage&def2=B6XS84&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=B6XS84)

Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Garnier, Applied and environmental microbiology 2010 (no snippet) Q72TL3 Queuine tRNA-ribosyltransferase from Leptospira interrogans serogroup Icterohaemorrhagiae serovar copenhageni (strain Fiocruz L1-130) 39% identity, 89% coverage&def2=Q72TL3&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q72TL3)

Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory Kumar, Scientific reports 2019 “...(pathogenic, intermediate and saprophytic) while, inner membrane protein CoaX (Q72NP0) and outer membrane protein Tgt (Q72TL3) were present in only pathogenic and intermediate but absent in saprophytic Leptospira spp. Two outer membrane proteins viz . GcvT (Q72VI6) and GatA (Q72SC3) were present in pathogenic and intermediate...” PGN_1472 queuine tRNA-ribosyltransferase (RefSeq) from Porphyromonas gingivalis ATCC 33277 37% identity, 88% coverage&def2=PGN_1472&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS5608116)

Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant Hirano, Frontiers in cellular and infection microbiology 2012 “...Also up-regulated in the luxS mutant were the potential operons spanning PGN_1791 to PGN_1790, and PGN_1472 to PGN_1468. The former region encodes a flavodoxin FldA and a hypothetical protein, respectively. The later region comprises genes involved in diverse functions such as tRNA-guanine transglycosylase, probable YjgP/YjgQ family...” BB0809 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Borrelia burgdorferi B31 35% identity, 92% coverage&def2=BB0809&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS44451)

Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America Qiu, Emerging infectious diseases 2008 “...R-CCCGTTAACAAATAGAC Main chromosome (555 K) BB0622 ( ackA ) F-TTGTCAAATACAAAAGG, R-AATGTCTTCAAGAATGG Main chromosome (649 K) BB0809 ( tgt ) F-ATGTTTAGTGTAATCAAGAATG, R-ATCGAAATTTTCCTCTTCATAC Main chromosome (855 K) BBA24 ( dpbA ) F1-TAATGTTATGATTAAATG, F2-ATGAATAAATATCAAAAAAC, R-GAAATTCCAAATAACATC lp54 BBB19 ( ospC ) F-CCGTTAGTCCAATGGCTCCAG, R-ATGCAAATTAAAGTTAATATC cp26 BBD14 F-ATGATAATAAAAATAAAAAATAATG, R-ATTTTGATTAATTTTAATTTTGCTG lp17 *B31 open...” Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals Brooks, Infection and immunity 2003 “...[B. burgdorferi]) BBG19 (hypothetical protein) BB0809 (tRNA-guanine transglycosylase [tgt] [Zymomonas mobilis]) BB0844 (hypothetical protein) BBQ63...” Q822U8 Queuine tRNA-ribosyltransferase from Chlamydia caviae (strain ATCC VR-813 / DSM 19441 / 03DC25 / GPIC) 34% identity, 90% coverage&def2=Q822U8&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q822U8)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) tgt / O84196 tRNA-guanosine34 queuine transglycosylase (EC 2.4.2.64) from Chlamydia trachomatis (strain D/UW-3/Cx) (see paper) O84196 Queuine tRNA-ribosyltransferase from Chlamydia trachomatis (strain D/UW-3/Cx) CT193 Queuine tRNA Ribosyl Transferase (NCBI ptt file) from Chlamydia trachomatis D/UW-3/CX 34% identity, 89% coverage&def2=tgt%20/%20O84196&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=O84196)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Culture-independent sequence analysis of Chlamydia trachomatis in urogenital specimens identifies regions of recombination and in-patient sequence mutations Putman, Microbiology (Reading, England) 2013 “...CT869 CT872 D/13-96 F/2-93 F/6-94 F/11-96 CT833 CT835 CT836 CT193 CT837 CT838 CT194 CT195 Fig. 4. Genome maps of clinical isolates examined in this study. Each...” Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates Almeida, Journal of bacteriology 2012 “...(RT-PCR) to determine if ct058 and ct059, or ct192 and ct193, are part of the same transcriptional unit. For this, RNA was isolated from HeLa 229 cells infected...” “...as these genes could be cotranscribed with ct059 or ct193, respectively (Fig. 5A). Therefore, we used RT-PCR with a cDNA template generated from total RNA of...” Q9Z8W5 Queuine tRNA-ribosyltransferase from Chlamydia pneumoniae 35% identity, 89% coverage&def2=Q9Z8W5&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q9Z8W5)

Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach Alshamsan, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society 2017 “...initiation factor sigma D protein (Q9Z8I1), transcription repressor protein HrcA (Q9Z850), endonuclease IV (Q9Z7H3), tRNA-ribosyltransferase (Q9Z8W5), DNA-directed DNA polymerase III chain (Q7VQ53), Methionyl-tRNA formyltransferase (Q9Z7Q5), DNA repair protein RecO (Q9Z7W5), Ribonuclease H-III (Q9Z6J1), ribosome-binding factor A (Q9Z8M0), RNA methyltransferase (Q9Z7N0), endonuclease III (Q9Z769), translation initiation factor...” TC0465 queuine tRNA-ribosyltransferase (NCBI ptt file) from Chlamydia muridarum Nigg 34% identity, 90% coverage&def2=TC0465&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS370780)

Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability Dimond, Molecular microbiology 2021 “...tc0463 Conserved hypothetical protein 80/98 78 R tc0464 inc Inclusion membrane protein 46/62 59 R tc0465 tgt Queuine tRNA-ribosyltransferase 91/94 0 R tc0466 mgtE Magnesium transporter 99/99 0 R tc0468 Conserved hypothetical protein 71/84 0 R tc0469 inc Inclusion membrane protein 57/73 32 R tc0470 tsaD...” ECH_0445 queuine tRNA-ribosyltransferase (NCBI) from Ehrlichia chaffeensis str. Arkansas 34% identity, 90% coverage&def2=ECH_0445&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS1229843)

Multiple Ehrlichia chaffeensis Genes Critical for Its Persistent Infection in a Vertebrate Host Are Identified by Random Mutagenesis Coupled with In Vivo Infection Assessment. Wang, Infection and immunity 2020 “...236424 + 137/618 5 D3-2 ECH_0368 Dioxygenase family protein 360362 + 243/675 6 s34 C8 ECH_0445 Queuine tRNA-ribosyltransferase 423364 + 352/1,191 7 C1-1 ECH_0475 Signal recognition particle protein 454669 1302/1,347 8 s33 C7 ECH_0525 Hypothetical protein 525880 1037/2,001 9 s34 E3 ECH_0592 Coproporphyrinogen III oxidase, aerobic,...” “...s33 E5 ECH_0251 Hypothetical protein 5 D3-2 ECH_0368 Dioxygenase family protein (oxidoreductase) 6 s34 C8 ECH_0445 Queuine tRNA-ribosyltransferase (protein synthesis) 7 C1-1 ECH_0475 Signal recognition particle protein (protein synthesis) 8 s33 C7 ECH_0525 Hypothetical protein 10 B5-1 ECH_0600 Hypothetical protein 11 D3-1 ECH_0614 Hypothetical protein 14...” MSMEG_6313 tRNA guanosine(34) transglycosylase Tgt from Mycolicibacterium smegmatis MC2 155 MSMEG_6313 queuine tRNA-ribosyltransferase (NCBI) from Mycobacterium smegmatis str. MC2 155 34% identity, 87% coverage&def2=MSMEG_6313&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=WP_003897733.1)

Key Transitions in the Evolution of Rapid and Slow Growing Mycobacteria Identified by Comparative Genomics Bachmann, Frontiers in microbiology 2019 “...PstB COG1117 ABC-type phosphate transport system, ATPase component MSMEG_6306 GlnS COG0008 Glutamyl- and glutaminyl-tRNA synthetases MSMEG_6313 Tgt COG0343 Queuine/archaeosine tRNA-ribosyltransferase MSMEG_6899 COG5650 Predicted integral membrane protein MSMEG_6914 GDB1 COG3408 Glycogen debranching enzyme Locus tags are from Mycolicibacterium smegmatis str. MC2 155 genome (NC_008596). Genes are present...” BMEI1003 QUEUINE TRNA-RIBOSYLTRANSFERASE (NCBI ptt file) from Brucella melitensis 16M 39% identity, 49% coverage&def2=BMEI1003&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS179797)

Ultrasensitive Detection of Pathogenic Bacteria by Targeting High Copy Signature Genes Dong, Frontiers in veterinary science 2022 “...I + 938429 938650 Hypothetical protein BMEI0906 318 318 2 I 939309 938992 Hypothetical protein BMEI1003 609 609 2 I 1044479 1043871 Queuine trna-ribosyltransferase BMEI1399 309 309 2 I 1454879 1454571 Transposase BMEI1411 309 309 2 I 1460411 1460103 Transposase BMEI1412 276 276 2 I 1460530...” Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands Rajashekara, Journal of bacteriology 2008 “...in Brucella virulence (7, 14), and a tRNA-ribosyltransferase (BMEI1003) (Fig. 3). To determine the contribution of genes within this island to pathogenesis, we...” PF3D7_1242200 queuine tRNA-ribosyltransferase, putative from Plasmodium falciparum 3D7 28% identity, 42% coverage&def2=PF3D7_1242200&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=XP_001350810.2)

Plasmodium apicoplast tyrosyl-tRNA synthetase recognizes an unusual, simplified identity set in cognate tRNATyr Cela, PloS one 2018 “...20 ]. For example, three putative queuine tRNA-ribosyltransferase are found in EupathDB, one of which (PF3D7_1242200) is predicted to be targeted to the apicoplast. Queuosine and its derivatives are found in bacterial and eukaryal tRNAs with a G34 [ 55 ], and guarantee fidelity and efficiency...” Aminoacylation of Plasmodium falciparum tRNA(Asn) and insights in the synthesis of asparagine repeats Filisetti, The Journal of biological chemistry 2013 “...tRNA ribosyltransferases in the P. falciparum genome (PF3D7_1242200, probably targeted to the apicoplast, and PF3D7_0717400, the putative cytosolic enzyme)...” 7nq4B / Q9H974 Human tRNA guanine transglycosylase (tgt), RNA-bound covalent intermediate (see paper) 28% identity, 61% coverage&def2=7nq4B%20/%20Q9H974&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::7nq4B)

Ligands: rna; zinc ion (7nq4B) 6fv5B / B8ZXI1 Qtrt2, the non-catalytic subunit of murine tRNA-guanine transglycosylase (see paper) 29% identity, 58% coverage&def2=6fv5B%20/%20B8ZXI1&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::6fv5B)

Ligand: zinc ion (6fv5B) Q8PXW5 tRNA-guanine(15) transglycosylase from Methanosarcina mazei (strain ATCC BAA-159 / DSM 3647 / Goe1 / Go1 / JCM 11833 / OCM 88) MM1101, NP_633125 Archaeosine tRNA-ribosyltransferase (NCBI ptt file) from Methanosarcina mazei Goe1 24% identity, 70% coverage&def2=Q8PXW5&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q8PXW5)

Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. Turner, Journal of bacteriology 2020 (secret) Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien ,...” Q8THU2 tRNA-guanosine34 transglycosylase (subunit 2/2) (EC 2.4.2.29); tRNA-guanine15 transglycosylase (EC 2.4.2.48) from Methanosarcina acetivorans (see paper) NP_619281 archaeosine tRNA-ribosyltransferase (NCBI ptt file) from Methanosarcina acetivorans C2A 24% identity, 70% coverage&def2=Q8THU2&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS237632)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus...”

QTRT2_HUMAN / Q9H974 Queuine tRNA-ribosyltransferase accessory subunit 2; Queuine tRNA-ribosyltransferase domain-containing protein 1 from Homo sapiens (Human) (see 2 papers) QTRT2 / Q9H974 queuine tRNA-ribosyltransferase accessory subunit (EC 2.4.2.64) from Homo sapiens (see 7 papers) NP_078914 queuine tRNA-ribosyltransferase accessory subunit 2 isoform 1 from Homo sapiens 25% identity, 58% coverage&def2=QTRT2_HUMAN%20/%20Q9H974&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=NP_078914.1)

function: Non-catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. Chen, RNA (New York, N.Y.) 2010 GeneRIF: TGT is composed of a catalytic subunit, QTRT1, and QTRTD1, not USP14. QTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. An integrative method for scoring candidate genes from association studies: application to warfarin dosing. Tatonetti, BMC bioinformatics 2010 GeneRIF: Observational study of gene-disease association. (HuGE Navigator) QTRT2_MOUSE / B8ZXI1 Queuine tRNA-ribosyltransferase accessory subunit 2; Queuine tRNA-ribosyltransferase domain-containing protein 1 from Mus musculus (Mouse) (see 2 papers) 26% identity, 57% coverage&def2=QTRT2_MOUSE%20/%20B8ZXI1&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=SwissProt::B8ZXI1)

function: Non-catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. B1L6M8 tRNA-guanine(15) transglycosylase from Korarchaeum cryptofilum (strain OPF8) 24% identity, 61% coverage&def2=B1L6M8&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=B1L6M8)

Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation. Russo, BMC bioinformatics 2021 “...will discuss more in detail in the following. Fig. 6 Annotation for protein Q68827 and B1L6M8. a Top: Pfam annotation for Q68827; the yellow box indicates a hit obtained using profile-HMMs derived from the metacluster MC-18_PUA. Bottom: Pfam annotation of protein B1L6M8; the yellow box indicates...” ATGT_METJA / Q57878 tRNA-guanine(15) transglycosylase; 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Archaeal tRNA-guanine transglycosylase; EC 2.4.2.48 from Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) (Methanococcus jannaschii) (see paper) Q57878 tRNA-guanine15 transglycosylase (EC 2.4.2.48) from Methanocaldococcus jannaschii (see paper) tgtA / Q57878 7-cyano-7-deazaguanine tRNA-ribosyltransferase monomer (EC 2.4.2.48) from Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) (see paper) 24% identity, 51% coverage&def2=ATGT_METJA%20/%20Q57878&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=SwissProt::Q57878)

function: Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs. Can also utilize guanine as substrate. catalytic activity: 7-cyano-7-deazaguanine + guanosine(15) in tRNA = 7-cyano-7- carbaguanosine(15) in tRNA + guanine (RHEA:43164) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) 1iq8A / O58843 Crystal structure of archaeosine tRNA-guanine transglycosylase from pyrococcus horikoshii (see paper) 26% identity, 53% coverage&def2=1iq8A%20/%20O58843&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=biolip::1iq8A)

Ligands: zinc ion; magnesium ion (1iq8A) ATGT_PYRHO / O58843 tRNA-guanine(15) transglycosylase; 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Archaeal tRNA-guanine transglycosylase; EC 2.4.2.48 from Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3) (see 2 papers) O58843 tRNA-guanine15 transglycosylase (EC 2.4.2.48) from Pyrococcus horikoshii (see 3 papers) NP_143020 hypothetical protein (NCBI ptt file) from Pyrococcus horikoshii OT3 26% identity, 53% coverage&def2=ATGT_PYRHO%20/%20O58843&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS30969)

function: Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs. catalytic activity: 7-cyano-7-deazaguanine + guanosine(15) in tRNA = 7-cyano-7- carbaguanosine(15) in tRNA + guanine (RHEA:43164) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Homodimer. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in...” PAB0740 archaeosine tRNA-ribosyltransferase (NCBI ptt file) from Pyrococcus abyssi GE5 24% identity, 62% coverage&def2=PAB0740&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS5698)

Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis Gao, BMC genomics 2007 “...base, archaeosine (7-formamidino-7-deazaguanosine) [ 71 ]. It should be mentioned that there is another protein PAB0740 in the same genome, which is also annotated and experimentally confirmed as ArcTGT [ 72 ]. The latter belongs to a family of proteins that are highly conserved in all...” “...domain (named after pseudouridine synthase and archaeosine transglycosylase), but its function is likely different from PAB0740. The protein PAB2404, which is annotated as DNA polymerase II large subunit, is highly conserved within Euryarchaeota, but is not found anywhere else except in Nanoarchaeum . This enzyme is...” ATGT_HALVD / Q9C4M3 tRNA-guanine(15) transglycosylase; 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Archaeal tRNA-guanine transglycosylase; EC 2.4.2.48 from Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) (Halobacterium volcanii) (see 2 papers) Q9C4M3 tRNA-guanine15 transglycosylase (EC 2.4.2.48) from Haloferax volcanii (see paper) HVO_2001 queuine/archaeosine tRNA-ribosyltransferase (RefSeq) from Haloferax volcanii DS2 24% identity, 68% coverage&def2=ATGT_HALVD%20/%20Q9C4M3&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS10160455)

function: Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs. catalytic activity: 7-cyano-7-deazaguanine + guanosine(15) in tRNA = 7-cyano-7- carbaguanosine(15) in tRNA + guanine (RHEA:43164) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) disruption phenotype: Mutants lack the archaeosine modification, but do not show any growth defects. Towards a systems approach in the genetic analysis of archaea: Accelerating mutant construction and phenotypic analysis in Haloferax volcanii Blaby, Archaea (Vancouver, B.C.) 2010 “...temperatures revealed several strains that exhibit cold sensitivities. These included deletions in HVO_0916, HVO_1631, and HVO_2001 ( Figure 4(b) and Supplementary Table 4). Conversely, the strain bearing a deletion in HVO_2477 exhibits increased tolerance to low temperature. As often seen when deleting components of the translation...” “...and HVO_1631 is homologous to Dph2, the first enzyme of the pathway [ 64 ]. HVO_2001 encodes a tRNA-guaninetransglycosylase (TGT) [ 17 ]. TGT is a key enzyme in the synthesis of Archaeosine (G + ), a modification of tRNA found specifically in Archaea. G +...” A Gateway platform for functional genomics in Haloferax volcanii: deletion of three tRNA modification genes El, Archaea (Vancouver, B.C.) 2009 “...to delete three predicted tRNA modification genes: HVO_2001 (encoding an archaeal transglycosyl tranferase or arcTGT), which is involved in archeosine...” “...constructed in any archaeal organism. By deleting the corresponding HVO_2001 gene, we will address the essentiality of a protein family that is found in most...” RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes Grosjean, BMC genomics 2008 “...Mi, F1, P1, P3, S1-3,T1-2, W1, Y1, V2 Homology with M. jannaschii MJ0436[ 87 ] HVO_2001 0343 1IQ8 22 Me Cbf5 without Guide RNA? See text 26 m 2 G m 2 2 G A3, R3, L4/A2,R2,I1-2, L1-3,L5,K1-2,S1-3,T1-2, W1 Homology with P. furiosus protein PF1871[ 179...” ATGT_PYRFU / Q8TH08 tRNA-guanine(15) transglycosylase; 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Archaeal tRNA-guanine transglycosylase; EC 2.4.2.48 from Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) (see paper) 25% identity, 53% coverage&def2=ATGT_PYRFU%20/%20Q8TH08&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=SwissProt::Q8TH08)

function: Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs. catalytic activity: 7-cyano-7-deazaguanine + guanosine(15) in tRNA = 7-cyano-7- carbaguanosine(15) in tRNA + guanine (RHEA:43164) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) Q5JHC0 tRNA-guanine(15) transglycosylase from Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1) TK0760 archaeosine tRNA-guanine transglycosylase (NCBI) from Thermococcus kodakaraensis KOD1 23% identity, 53% coverage&def2=Q5JHC0&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=Q5JHC0)

Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. Turner, Journal of bacteriology 2020 (secret) Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance Orita, Nucleic acids research 2019 “...( 8 ) tRNA modification tk0754 tRNA (Met) cytidine acetyltransferase (TmcA) FFH02, FFH32 (15221530) + tk0760 7-Cyano-7-deazaguanine tRNA-ribosyltransferase (TgtA) FFH16, FFH17, FFH18 (962970), FFH21 (11671175) + tk0981 Guanine10- N 2 -dimethyltransferase(Trm11) FFH35 (105113) + tk1198 Organic radical activating protein (QueE) FFH05 (595603),FFH24 (497505) + tk1328 N...” “...genes for 10 mutants. Two and four mutants had the transposon insertion within tk1198 and tk0760 , annotated as queE and tgtA , encoding organic radical activating protein and 7-cyano-7-deazaguanine tRNA-ribosyltransferase, respectively. Both of the genes have been proposed to function in archaeosine (7-deaza-guanosine derivative [G...” Distinct Modified Nucleosides in tRNATrp from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m2G10/m22G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. Hirata, Journal of bacteriology 2019 (secret) Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon Kawamura, Nucleic acids research 2016 “...( 27 ). Cloning, expression and purification of T. kodakarensis ArcTGT The T. kodakarensis arcTGT (TK0760) gene was amplified by polymerase chain reaction (PCR) from T. kodakarensis genomic DNA using the following primers : TK0760F primer, 5- GGA GAT ATA CAT ATG GTC GAT TTC AGG...” “...tRNA Leu genes by plasmid vectors. Details are available in the Supplementary information. The arcTGT (Tk0760) gene in the genome of T. kodakarensis strain KUWA was disrupted by the method described in the Supplementary information. We successfully isolated candidate clones and their DNA sequences in the...” Q9HI54 tRNA-guanine15 transglycosylase (EC 2.4.2.48) from Thermoplasma acidophilum (see paper) Ta1493 queuine tRNA-ribosyltransferase related protein (NCBI ptt file) from Thermoplasma acidophilum DSM 1728 24% identity, 41% coverage&def2=Q9HI54&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS68114)

Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon Kawamura, Nucleic acids research 2016 “...this study, the construction of T. kodakarensis strain KUWA, the T. kodakarensis arcTGT strain, and Ta1493 gene complimentary (KTA1493) strain, and the expression of tRNA Leu in the KTA1493 strain are described in the Supplementary data (Supplementary Figures S1S8). Nucleoside analysis Nucleoside analysis was performed after...” “...analysis. Preparation of the anti-Ta1493 gene product polyclonal antibody fraction and western blotting analysis The Ta1493 coding region was amplified by PCR from T. acidophilum genomic DNA using the following primers: Ta1493F 5- GGA GAT ATA CAT ATG AAG ATA GAG GAA AGG GAC GG -3;...” NEQ124 NEQ124 (NCBI) from Nanoarchaeum equitans Kin4-M 26% identity, 68% coverage&def2=NEQ124&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS544133)

RNA processing in the minimal organism Nanoarchaeum equitans Randau, Genome biology 2012 “...found adjacent to NEQ156 (RNA polymerase subunit B, carboxy-terminal part), NEQ096/NEQ097 (hypothetical protein, carboxy-terminal part), NEQ124 (archaeosine tRNA-guanine transglycosylase, amino-terminal part) and NEQ434 (reverse gyrase, amino-terminal part) (Figure 7a ). NEQ157, the gene located at the position where the amino-terminal portion of RNA polymerase subunit B...” The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism Waters, Proceedings of the National Academy of Sciences of the United States of America 2003 “...encoding N-terminal part C-terminal part NEQ003 NEQ045 NEQ068 NEQ124 NEQ409 NEQ324 NEQ528 NEQ305 NEQ173 NEQ245 NEQ434 NEQ438 NEQ495 NEQ547 NEQ156 NEQ396 NEQ318...” MJ0436 queuine tRNA-ribosyltransferase (tgtA) (NCBI ptt file) from Methanocaldococcus jannaschii DSM 2661 25% identity, 41% coverage&def2=MJ0436&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=VIMSS9007)

tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. Yu, Journal of bacteriology 2019 “...precursor (MptA/MJ0775, QueD/MJ1272, QueE/MJ1645, and QueC/MJ1347); TGT (MJ0436), which inserts preQ0 in tRNA (51); and ArcS (MJ1022), which converts preQ0May...” Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA Phillips, The Journal of biological chemistry 2010 “...obtained from comparing the Methanocaldococcus jannaschii arcTGT (MJ0436) and TgtA2 (MJ1022)). Detailed analysis of the sequence alignments of the arcTGT and...” AFUA_5G03470 tRNA-guanine transglycosylase family protein from Aspergillus fumigatus Af293 30% identity, 26% coverage&def2=AFUA_5G03470&seq1=MASSFPALQFKVVARCSTTRARVTDIQLPHGLVESPVFMPVGTQASLKGVLPEQLDALGCKIMLNNTYHLGLKPGQEVLDTVGGAHRFQSWNKNILTDSGGFQMVSLLKLATITEDGVTFLSPRDGTPMLLTPEHSISLQNSIGSDIMMQLDDVVHTLTESKRMEEAMYRSIRWLDRCIQAHKRPETQNLFCIIQGGLDKRLREICCREMVKRNTPGIAVGGLSGGEEKHAFCETVYTCTSILPDNKPRYLMGVGYAEDLVVCVALGMDMFDCVYPTRTARFGNALTRKGVINLRNQKFRNDIGPLEEGCSCPCCKTELEGGWGITRAYFNSLVSKETVGANLMTIHNVHFQLQLMRDMRESIIKDEFPSFVKNFFHEWNHGDKSNYPSWAVDALRMVNIDLLA&acc2=XP_747997.1)

The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence Alves, Molecular microbiology 2016 “...NI 1.03423 1.24289 AFUA_5G11000 AFUB_058570 U2 small nuclear ribonucleoprotein A (U2 snRNP-A) NI 1.18664 NI AFUA_5G03470 AFUB_051980 tRNA-guanine transglycosylase family protein 1.4233 NI 1.90945 AFUA_1G05560 AFUB_005900 Ortholog(s) have role in cytoplasmic translation NI 1.56902 NI AFUA_3G06010 AFUB_043040 RNA processing protein Emg1. Putative NI 1.0297 NI AFUA_6G05080...” Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus Owens, Eukaryotic cell 2015 “...AFUA_1G13060 AFUA_7G02490 AFUA_8G00390 AFUA_8G00440 AFUA_5G03470 AFUA_5G04060 AFUA_2G05950 AFUA_2G05020 AFUA_1G05560 AFUA_6G09950 AFUA_6G07300 AFUA_4G13530...”

dexink commented 1 year ago

PaperBLAST - O14096 (Queuine tRNA-ribosyltransferase accessory subunit 2)

Query Sequence: O14096

QTRT2_SCHPO / O14096 Queuine tRNA-ribosyltransferase accessory subunit 2; Queuine tRNA-ribosyltransferase domain-containing protein 1 from Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast) (see paper) 100% identity, 100% coverage&def2=QTRT2_SCHPO%20/%20O14096&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=SwissProt::O14096)

function: Non-catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Heterodimer of a catalytic subunit and an accessory subunit. SPAC2F3.13c queuine tRNA-ribosyltransferase (predicted) (RefSeq) from Schizosaccharomyces pombe 100% identity, 52% coverage&def2=SPAC2F3.13c&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS6576711)

Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe Schmidt, Molecular systems biology 2007 “...1592.09 492.5 0.462 SPAC11E3.12 Conserved eukaryotic protein K.IY#GVNTKEKLVDIM EALTQK.K 2.6351 0.115 2388.2 257.5 0.421 SPAC2F3.13c Queuine tRNA-ribosyltransferase R.ELVAWILLQLY#VYIKEHGK.E 2.8689 0.103 2396.72 526.9 0.5 Name Product Ubiquitylated peptide Xcorr DeltCN ObsM+H+ SpScore Ion% ppk14 Serine/threonine protein kinase K.SGK@FY#AMKVLSKQEM IK.R 3.3777 0.1358 2215.44 1034.9 0.562 SPAC589.10c...” PLP1_SCHPO / O14095 Thioredoxin domain-containing protein plp1; Phosducin-like protein 1 from Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast) (see paper) 100% identity, 43% coverage&def2=PLP1_SCHPO%20/%20O14095&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=SwissProt::O14095)

function: Inhibits early G-protein signaling events following pheromone stimulation. May help create heterodimerizable beta-tubulin by facilitating the efficient transfer of nascent beta-tubulin polypeptides to the folding apparatus (By similarity). AFUA_5G03470 tRNA-guanine transglycosylase family protein from Aspergillus fumigatus Af293 33% identity, 59% coverage&def2=AFUA_5G03470&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_747997.1)

The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence Alves, Molecular microbiology 2016 “...NI 1.03423 1.24289 AFUA_5G11000 AFUB_058570 U2 small nuclear ribonucleoprotein A (U2 snRNP-A) NI 1.18664 NI AFUA_5G03470 AFUB_051980 tRNA-guanine transglycosylase family protein 1.4233 NI 1.90945 AFUA_1G05560 AFUB_005900 Ortholog(s) have role in cytoplasmic translation NI 1.56902 NI AFUA_3G06010 AFUB_043040 RNA processing protein Emg1. Putative NI 1.0297 NI AFUA_6G05080...” Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus Owens, Eukaryotic cell 2015 “...AFUA_1G13060 AFUA_7G02490 AFUA_8G00390 AFUA_8G00440 AFUA_5G03470 AFUA_5G04060 AFUA_2G05950 AFUA_2G05020 AFUA_1G05560 AFUA_6G09950 AFUA_6G07300 AFUA_4G13530...” PLP3B_ARATH / Q8LCV1 Thioredoxin domain-containing protein PLP3B; Phosducin-like protein 3B from Arabidopsis thaliana (Mouse-ear cress) (see paper) NP_569033 thioredoxin domain PLP3B-like protein from Arabidopsis thaliana AT5G66410 PLP3b (Phosducin-like protein 3 homolog); beta-tubulin binding (RefSeq) from Arabidopsis thaliana 43% identity, 21% coverage&def2=PLP3B_ARATH%20/%20Q8LCV1&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_569033.1)

function: Tubulin-binding protein involved in microtubule formation. subunit: Interacts with TUBB2, TUBB3, TUBB4 and TUBB5. disruption phenotype: No visible phenotype under normal growth conditions, but plants with reduced levels of both PLP3A and PLP3B show defects in cytokinesis, cortical microtubule array formation, oriented cell growth, and maintenance of proper ploidy. Phosducin-Like Protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. Castellano, The Plant cell 2008 GeneRIF: showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division Microtubules in plants Hashimoto, The arabidopsis book 2015 “...In Arabidopsis, this CCT-interacting protein (At3g50960 and At5g66410) is required for the proper functioning and organization of MTs during cell division...” Assessing the influence of adjacent gene orientation on the evolution of gene upstream regions in Arabidopsis thaliana He, Genetics 2010 “...deviation AT4G35760 AT4G02560 AT5G64220 AT1G19680 AT5G66410 AT3G46550 AT3G09480 AT1G73980 AT2G42670 AT2G17845 AT3G24495 AT2G28190 AT5G64930 AT1G77480 AT5G47120...” PLP3A_ARATH / Q6NPL9 Thioredoxin domain-containing protein PLP3A; Phosducin-like protein 3A from Arabidopsis thaliana (Mouse-ear cress) (see paper) AT3G50960 PLP3a (Phosducin-like protein 3 homolog); beta-tubulin binding (RefSeq) from Arabidopsis thaliana 44% identity, 19% coverage&def2=PLP3A_ARATH%20/%20Q6NPL9&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS10097395)

function: Tubulin-binding protein involved in microtubule formation. subunit: Interacts with TUBB2, TUBB3, TUBB4 and TUBB5. Microtubules in plants Hashimoto, The arabidopsis book 2015 “...et al., 2010). In Arabidopsis, this CCT-interacting protein (At3g50960 and At5g66410) is required for the proper functioning and organization of MTs during cell...” Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce Porth, PloS one 2012 “...signaling WS0268_O17 0.096 6.80E037 AT3G22190 IQD5 IQD5 (IQ-domain 5); calmodulin binding signaling WS00930_C14 0.096 5.80E161 AT3G50960 similar to Thioredoxin domain 2 [Medicago truncatula] signaling WS0089_G23 0.097 2.6E38 AT1G66410 ACAM-4, CAM4 CAM4 (CALMODULIN 4); calcium ion binding signaling WS00111_O11 0.099 1.80E087 AT2G30020 protein phosphatase 2C, putative/PP2C, putative...” Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity Sharabi-Schwager, Journal of experimental botany 2010 “...At3g23340 2.7 CKL10 (Casein Kinase I-like 10) At3g54030 2.7 Protein kinase family protein aa activation At3g50960 3.4 PLP3A (PHOSDUCIN-LIKE PROTEIN 3 HOMOLOG); Targeting At2g28900 32.3 AtOEP16, plastid import of protochlorophyllide oxidoreductase A Finally, a remarkable up-regulation of AtOEP16 (32.3-fold) was noted. AtOEP16 encodes a transporter specifically...” F6YEB0 Thioredoxin domain containing 9 from Macaca mulatta 37% identity, 26% coverage&def2=F6YEB0&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=F6YEB0)

Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. Sun, Journal of virological methods 2015 “...of biological process; defense response; response to stimulus 2.32E02 1.23 86 Thioredoxin domain-containing protein 9 F6YEB0 nucleus; cytoplasm; cytoskeleton cellular homeostasis; regulation of biological process 3.79E02 1.23 87 Four and a half LIM domains protein 2 F7GXH4 protein binding; metal ion binding nucleus; cytoskeleton metabolic process;...” O18883 Thioredoxin domain-containing protein 9 from Bos taurus 37% identity, 26% coverage&def2=O18883&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=O18883)

Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility Talluri, Scientific reports 2022 “...Q3T144 TMEM106C Transmembrane protein 106C 3.93 Integral component of Endoplasmic reticulum, facilitates sperm motility 2. O18883 TXNDC9 Thioredoxin domain-containing protein 9 3.35 Microtubule organization, protection against oxidative stress 3. Q08DX7 SPNS1 Protein spinster homolog 1 3.17 Transmembrane transporter activity 4. Q3SZ84 BOLA3 BolA-like protein 3 3.07...” TXND9_HUMAN / O14530 Thioredoxin domain-containing protein 9; ATP-binding protein associated with cell differentiation; Protein 1-4 from Homo sapiens (Human) (see paper) 34% identity, 27% coverage&def2=TXND9_HUMAN%20/%20O14530&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=O14530)

function: Significantly diminishes the chaperonin TCP1 complex ATPase activity, thus negatively impacts protein folding, including that of actin or tubulin. subunit: Forms ternary complexes with the chaperonin TCP1 complex, spanning the cylindrical chaperonin cavity and contacting at least 2 subunits The mitotic surveillance pathway requires PLK1-dependent 53BP1 displacement from kinetochores Burigotto, 2023 Substrate specificity of thioredoxins and glutaredoxins - towards a functional classification Gellert, Heliyon 2019 “..., 66 ] c - Txndc8 Q6A555 CGPC spermatogenesis [ 67 ] c/g - Txndc9 O14530 TFRC protein complex assembly [ 68 ] c/n 91 Txndc11.d1 Q6PKC3 CGQS e/l 83 Txndc11.d2 CGFC Txndc12 O95881 CGAC 1sen, ... PDI e 30 Txndc15 Q96J42 CRFS ciliogenesis [ 69...” Structural disorder in the proteome and interactome of Alkhurma virus (ALKV) Redwan, Cellular and molecular life sciences : CMLS 2019 “...LIM domains protein 2 (FHL2, Q14192), Protein melanophilin (MLPH, Q9BV36), Thioredoxin domain-containing protein 9 (TXNDC9, O14530), Zinc finger protein 135 (ZNF135, P52742), Heterogeneous nuclear ribonucleoprotein H3 (HNRNPH3, P31942), Polyhomeotic-like protein 2 (PNC2, Q8IXK0), Protein Spindly (SPDL1 or Coiled-coil domain-containing protein 99 (CCDC99), Q96EA4), MyoD family inhibitor...” “...ligase 628 0.4350.224 40.13 7683, 8895, 99101, 107124, 429434, 444464, 481497, 591616 66 232 82 O14530, Thioredoxin domain-containing protein 9 (TXNDC9) TXNDC9 negatively affects protein folding, including folding of actin or tubulin via decreasing the ATPase activity of chaperonin TCP1 complex 226 0.3910.233 34.51 Not detected...” Nicotinamide N‑methyltransferase induces the proliferation and invasion of squamous cell carcinoma cells. Hah, Oncology reports 2019 “...44.1/5.04 10/17 22 0.0036 4825 Tropomyosin 1 chain P09493 32.7/4.69 5/13 15 0.0173 5008 HSP27 O14530 26.5/5.61 6/15 23 0.0004 6112 Cytokeratin 8 P05787 53.5/5.52 6/16 19 0.0125 3704 Cytokeratin 8 P05787 53.5/5.52 6/12 17 0.0081 5405 Cytokeratin 8 P05787 53.5/5.52 10/18 26 0.0133 2010 Adenosylhomosysteinase...” Heterogeneity analysis of the proteomes in clinically nonfunctional pituitary adenomas. Zhan, BMC medical genomics 2014 “...Heat shock protein 27 P04792 2.4() 4.9() 4001 ATP binding protein associated with cell differentiation O14530 11.4() 2.3() 2.7() 4.4() 4921 Chain 1: collagen alpha 2 (VI) chain P12110 5.3() 14.7() 5003 Hemoglobin beta-2 chain P18988 3.1() 2.1() 6103 N6-adenosine-methyltransferase 70kDa subunit Q86U44 6.2() 6.5() ()...” The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. Zhan, The EPMA journal 2010 “...P21980 TGM2 17.1 transglutaminase 2 C enzyme Q8IWU9 TPH2 10.6 tryptophan hydroxylase 2 NA enzyme O14530 TXNDC9 11.4 thioredoxin domain containing 9 NA other P08670 VIM 5.5 vimentin C other P27348 YWHAQ (includes EG:10971) 43.5 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide (14-3-3 protein tau) C...” TXND9_MOUSE / Q9CQ79 Thioredoxin domain-containing protein 9; ATP-binding protein associated with cell differentiation from Mus musculus (Mouse) (see paper) 35% identity, 28% coverage&def2=TXND9_MOUSE%20/%20Q9CQ79&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q9CQ79)

function: Significantly diminishes the chaperonin TCP1 complex ATPase activity, thus negatively impacts protein folding, including that of actin or tubulin. subunit: Forms ternary complexes with the chaperonin TCP1 complex, spanning the cylindrical chaperonin cavity and contacting at least 2 subunits. Development of a Multi-Target Strategy for the Treatment of Vitiligo via Machine Learning and Network Analysis Methods. Wang, Frontiers in pharmacology 2021 “...Q8VCG1 DUT 0.66 0.39 0.59 E9PVX6 MKI67 0.62 0.38 0.62 Q8BY71 HAT1 0.65 0.38 0.59 Q9CQ79 TXNDC9 0.58 0.38 0.64 Q9QWF0 CHAF1A 0.62 0.37 0.60 D3Z7B5 CIP2A 0.61 0.37 0.60 P13864 DNMT1 0.58 0.34 0.59 D3YXW1 LLPH 0.52 0.34 0.66 Q9CQ75 NDUFA2 0.60 0.34 0.56 Q80V26...” XP_016858636 thioredoxin domain-containing protein 9 isoform X1 from Homo sapiens 34% identity, 27% coverage&def2=XP_016858636&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_016858636.1)

Thioredoxin domain-containing protein 9 protects cells against UV-B-provoked apoptosis via NF-κB/p65 activation in cutaneous squamous cell carcinoma. Xiao, Oncology research 2023 GeneRIF: Thioredoxin domain-containing protein 9 protects cells against UV-B-provoked apoptosis via NF-kappaB/p65 activation in cutaneous squamous cell carcinoma. High level of TXNDC9 predicts poor prognosis and contributes to the NF-κB-regulated metastatic potential in gastric cancer. Yang, Neoplasma 2022 (PubMed) GeneRIF: High level of TXNDC9 predicts poor prognosis and contributes to the NF-kappaB-regulated metastatic potential in gastric cancer. TXNDC9 knockdown inhibits lung adenocarcinoma progression by targeting YWHAG. Wang, Molecular medicine reports 2022 GeneRIF: TXNDC9 knockdown inhibits lung adenocarcinoma progression by targeting YWHAG. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression. Feng, Oncogene 2020 (PubMed) GeneRIF: these studies demonstrate that the TXNDC9-PRDX1 axis plays an important role for ROS to activate AR functions. It provides a proof-of-principle that co-targeting AR and PRDX1 may be more effective to control prostate cancer (PCa) growth. Thioredoxin domain-containing protein 9 (TXNDC9) contributes to oxaliplatin resistance through regulation of autophagy-apoptosis in colorectal adenocarcinoma. Zhou, Biochemical and biophysical research communications 2020 (PubMed) GeneRIF: Thioredoxin domain-containing protein 9 (TXNDC9) contributes to oxaliplatin resistance through regulation of autophagy-apoptosis in colorectal adenocarcinoma. TXNDC9 promotes hepatocellular carcinoma progression by positive regulation of MYC-mediated transcriptional network. Chen, Cell death & disease 2018 GeneRIF: TXNDC9 promotes hepatocellular carcinoma progression by positive regulation of MYC-mediated transcriptional network. TXNDC9 expression in colorectal cancer cells and its influence on colorectal cancer prognosis. Lu, Cancer investigation 2012 (PubMed) GeneRIF: These findings suggest that TXNDC9 gene may function in colorectalcancer development Modulation of phosducin-like protein 3 (PhLP3) levels promotes cytoskeletal remodelling in a MAPK and RhoA-dependent manner. Hayes, PloS one 2011 GeneRIF: PhLP3 is important for the maintenance of beta-tubulin levels in mammalian cells. More Q8K581 Thioredoxin domain-containing protein 9 from Rattus norvegicus 35% identity, 28% coverage&def2=Q8K581&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q8K581)

Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers. Klepeisz, PloS one 2013 “...complex protein LAMTOR1 cell growth, cholesterol homeostasis, positive regulation of MAPK & TOR signaling cascade Q8K581 t Thioredoxin domain-containing protein 9 cell redox homeostasis P15709 t Bile salt sulfotransferase drug metabolic process P00176 Cytochrome P450 2B1 drug metabolic process P05178 t Cytochrome P450 2C6 drug metabolic...” AT3G25580 thioredoxin-related (RefSeq) from Arabidopsis thaliana 35% identity, 29% coverage&def2=AT3G25580&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS10094991)

Targeted insertion of large DNA sequences by homology-directed repair or non-homologous end joining in engineered tobacco BY-2 cells using designed zinc finger nucleases Schiermeyer, Plant direct 2019 “...& Goodman, 1982 ) and downstream by the intron of the Arabidopsis thioreductaselike protein gene, At3g25580, and the ZFN2 binding site (Ainley etal., 2013 ). The DsRed 3 part is flanked upstream by the ZFN4 binding site and the intron of the Arabidopsis 4CL5 gene, At3g21230,...” A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana Zhang, PloS one 2008 “...disulfide isomerase-like (PDIL) 0.38 (0.18) 0.42 0.90 AT1G19730 ATTRX4 (thioredoxin H-type 4) 0.44 0.14 3.06 AT3G25580 thioredoxin-related 0.22 (0.31) 0.41 0.53 AT3G62950 glutaredoxin family protein 0.30 0.40 0.76 AT4G15660 glutaredoxin family protein 0.30 0.24 1.23 AT5G06430 thioredoxin-related 0.49 0.23 2.12 AT5G06690 thioredoxin family protein 0.39 (0.96)...” TXND9_CAEEL / Q11183 Thioredoxin domain-containing protein 9 from Caenorhabditis elegans (see 2 papers) NP_498410 Thioredoxin domain-containing protein 9 from Caenorhabditis elegans 37% identity, 27% coverage&def2=TXND9_CAEEL%20/%20Q11183&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_498410.1)

function: Required for normal microtubule organization and function (PubMed:15009089, PubMed:25575561). Regulates tubulin acetylation in ALM and PLM neurons (PubMed:25575561). disruption phenotype: RNAi-mediated knockdown results in 60% embryonic lethality. Surviving 2-cell stage to 64-cell stage embryos display a disorganized arrangement and do not undergo cell divion. Due to short and diorganized microtubule arrangement, one cell stage embryos exhibit nuclear-centrosomal defects, failed cytokinesis, and abnormal pronuclear activity which include failed male pronucleus migration and the presence of multiple pronuclei. An evolutionarily conserved gene required for proper microtubule architecture in Caenorhabditis elegans. Ogawa, Genes to cells : devoted to molecular & cellular mechanisms 2004 (PubMed) GeneRIF: expressed throughout development with higher levels of expression in most cells of the nervous system and in vulva; results indicate that C05D11.3 is essential for proper microtubule organization and function AT2G18990 TXND9 (THIOREDOXIN DOMAIN-CONTAINING PROTEIN 9 HOMOLOG) (RefSeq) from Arabidopsis thaliana 35% identity, 26% coverage&def2=AT2G18990&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS10088714)

Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance Comadira, Journal of experimental botany 2015 “...At3g08710 encoding TrxH9, ak362034 homologous to At2g01270 encoding quiescin-sulfhydryl oxidase 2 and ak372587 homologous to At2g18990 encoding a thioredoxin domain containing protein) while transcripts encoding a cytosolic dehydroascorbate reductase (ak359422) and a mitochondrial/plastidal monodehydroascorbate reductase (ak357867) involved in the regeneration of oxidized ascorbate were significantly less...” 7nq4B / Q9H974 Human tRNA guanine transglycosylase (tgt), RNA-bound covalent intermediate (see paper) 26% identity, 55% coverage&def2=7nq4B%20/%20Q9H974&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::7nq4B)

Ligands: rna; zinc ion (7nq4B) XP_016486197 thioredoxin domain-containing protein 9 homolog from Nicotiana tabacum 36% identity, 26% coverage&def2=XP_016486197&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_016486197.1)

A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1 Mathioudakis, International journal of molecular sciences 2018 “...( St ; XP_006352322), Nicotiana benthamiana ( Nb ; Nbv5.1tr6261097), Nicotiana tabacum ( Nt ; XP_016486197) and Nicotiana sylvestris ( Ns ; XP_009767764) were also used. Conserved regions corresponding to the majority of the sequences are indicated with black color and with grey the different amino...” PBANKA_0519700 phosducin-like protein 2, putative from Plasmodium berghei ANKA 38% identity, 22% coverage&def2=PBANKA_0519700&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_034420438.1)

Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity Kooistra, PloS one 2018 “...parasite P . berghei as members of the phosducin-like family of proteins (PhLP), specifically PBANKA_1204800, PBANKA_0519700, and PBANKA_1231200 [ 10 , 16 ]. PBANKA_1204800 was designated as PhLP-1 as it was the first PhLP we identified in a Plasmodium species [ 10 ]. However, re-analysis of...” “...is more closely related to the PhLP-1 subgroup [ S1 Fig ]. The annotation of PBANKA_0519700 as PhLP-2 was confirmed. Consequently, for the remainder of this report, we will refer to the members of the P . berghei PhLP family as follows: PBANKA_1231200 as PbPhLP-1, PBANKA_0519700...” QTRT2_HUMAN / Q9H974 Queuine tRNA-ribosyltransferase accessory subunit 2; Queuine tRNA-ribosyltransferase domain-containing protein 1 from Homo sapiens (Human) (see 2 papers) QTRT2 / Q9H974 queuine tRNA-ribosyltransferase accessory subunit (EC 2.4.2.64) from Homo sapiens (see 7 papers) NP_078914 queuine tRNA-ribosyltransferase accessory subunit 2 isoform 1 from Homo sapiens 25% identity, 55% coverage&def2=QTRT2_HUMAN%20/%20Q9H974&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_078914.1)

function: Non-catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. Chen, RNA (New York, N.Y.) 2010 GeneRIF: TGT is composed of a catalytic subunit, QTRT1, and QTRTD1, not USP14. QTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. An integrative method for scoring candidate genes from association studies: application to warfarin dosing. Tatonetti, BMC bioinformatics 2010 GeneRIF: Observational study of gene-disease association. (HuGE Navigator) PF3D7_1036700 phosducin-like protein 2, putative from Plasmodium falciparum 3D7 36% identity, 26% coverage&def2=PF3D7_1036700&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_024329108.1)

Genome-wide SNP analysis of Plasmodium falciparum shows differentiation at drug-resistance-associated loci among malaria transmission settings in southern Mali Coulibaly, Frontiers in genetics 2022 “...Pf3D7_08_v3:1290857-1315811 PF3D7_0830300 - PF3D7_0830800 [6] SIAP2, SURFIN 8.2, PHISTc, HYP9, SLS-TRP k Pf3D7_10_v3:1386709-1447856 PF3D7_1035000 - PF3D7_1036700 [16] GLURP, MSP3, MSP6, MSP, MSP11 DBLMSP, DBLMSP2, LSA1 l Pf3D7_12_v3:96273-96385 PF3D7_1201400 [1] Plasmodium exported protein m Pf3D7_12_v3:659919-659920 PF3D7_1216600 [1] CelTOS n Pf3D7_12_v3:1662107-1663492 PF3D7_1239800 [1] Conserved Plasmodium protein o Pf3D7_13_v3:1465494-1466264...” XP_009767764 thioredoxin domain-containing protein 9 homolog from Nicotiana sylvestris 35% identity, 24% coverage&def2=XP_009767764&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_009767764.1)

A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1 Mathioudakis, International journal of molecular sciences 2018 “...Nb ; Nbv5.1tr6261097), Nicotiana tabacum ( Nt ; XP_016486197) and Nicotiana sylvestris ( Ns ; XP_009767764) were also used. Conserved regions corresponding to the majority of the sequences are indicated with black color and with grey the different amino acids in the conserved sequences. ( B...” XP_006352322 thioredoxin domain-containing protein 9 homolog from Solanum tuberosum 33% identity, 25% coverage&def2=XP_006352322&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_006352322.1)

A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1 Mathioudakis, International journal of molecular sciences 2018 “...Solanum lycopersicum ( Sl ) and the TXND9 orthologues from Solanum tuberosum ( St ; XP_006352322), Nicotiana benthamiana ( Nb ; Nbv5.1tr6261097), Nicotiana tabacum ( Nt ; XP_016486197) and Nicotiana sylvestris ( Ns ; XP_009767764) were also used. Conserved regions corresponding to the majority of the...” XP_004250298 thioredoxin domain-containing protein 9 homolog from Solanum lycopersicum 36% identity, 21% coverage&def2=XP_004250298&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_004250298.1)

A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1. Mathioudakis, International journal of molecular sciences 2018 GeneRIF: A thioredoxin domain-containing protein (TXND9) interacts with Pepino mosaic virus triple gene block protein 1. [TXND9] 6fv5B / B8ZXI1 Qtrt2, the non-catalytic subunit of murine tRNA-guanine transglycosylase (see paper) 24% identity, 55% coverage&def2=6fv5B%20/%20B8ZXI1&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::6fv5B)

Ligand: zinc ion (6fv5B) PLP1_YEAST / Q04004 Phosducin-like protein 1 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) (see 4 papers) NP_010469 Plp1p (RefSeq) from Saccharomyces cerevisiae 30% identity, 31% coverage&def2=PLP1_YEAST%20/%20Q04004&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS6581760)

function: Not essential for growth. Inhibits early G-protein signaling events following pheromone stimulation. May help create heterodimerizable beta-tubulin by facilitating the efficient transfer of nascent beta-tubulin polypeptides to the folding apparatus. subunit: Interacts with the G protein beta-gamma subunit complex (STE4- STE18 complex). The information highways of a biotechnological workhorse--signal transduction in Hypocrea jecorina Schmoll, BMC genomics 2008 “...grisea XP_357577.2 XP_001409912.1 Neurospora crassa XP_956705 XP_965767.1 Aspergillus nidulans XP_657686.1 XP_662165.1 EAA60135 Saccharomyces cerevisiae Q12017 NP_010469 Figure 2 Phylogenetic analysis of phoducin-like proteins . In contrast to S. cerevisiae , H. jecorina and other filamentous ascomycetes possess class I phosducin-like proteins, but no class III phosducin-like...” TGT_ZYMMO / P28720 Queuine tRNA-ribosyltransferase; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.29 from Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) (see 11 papers) P28720 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Zymomonas mobilis (see 11 papers) 23% identity, 55% coverage&def2=TGT_ZYMMO%20/%20P28720&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=P28720)

function: Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form the product. After dissociation, two additional enzymatic reactions on the tRNA convert PreQ1 to queuine (Q), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2-cyclopenten-1- yl)amino)methyl)-7-deazaguanosine). catalytic activity: 7-aminomethyl-7-carbaguanine + guanosine(34) in tRNA = 7- aminomethyl-7-carbaguanosine(34) in tRNA + guanine (RHEA:24104) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Homodimer. Within each dimer, one monomer is responsible for RNA recognition and catalysis, while the other monomer binds to the replacement base PreQ1. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Johannsson, Biomolecules 2018 “...TGT and mouse QTRT2 have been aligned to the sequence of human QTRT1 (UniProtKB entries P28720 B8ZXI1 and Q9BXR0) using T-Coffee. References 1. Boccaletto P. Machnicka M.A. Purta E. Pitkowski P. Bagiski B. Wirecki T.K. de Crcy-Lagard V. Ross R. Limbach P.A. Kotter A. MODOMICS: A...” WP_050720655 tRNA guanosine(34) transglycosylase Tgt from Zymomonas mobilis 23% identity, 55% coverage&def2=WP_050720655&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_050720655.1)

The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. Nguyen, ACS chemical biology 2020 (PubMed) GeneRIF: The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. QTRT2_MOUSE / B8ZXI1 Queuine tRNA-ribosyltransferase accessory subunit 2; Queuine tRNA-ribosyltransferase domain-containing protein 1 from Mus musculus (Mouse) (see 2 papers) 23% identity, 55% coverage&def2=QTRT2_MOUSE%20/%20B8ZXI1&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=SwissProt::B8ZXI1)

function: Non-catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. 4kwoA / P28720 tRNA guanine transglycosylase (tgt) in complex with furanoside-based lin-benzoguanine 3 (see paper) 23% identity, 55% coverage&def2=4kwoA%20/%20P28720&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::4kwoA)

Ligands: methyl 6-[6-amino-2-(methylamino)-8-oxo-7,8-dihydro-1h-imidazo[4,5-g]quinazolin-4-yl]-5,6-dideoxy-3-o-methyl-beta-d-ribo-hexofuranoside; zinc ion (4kwoA) 7a4kA / P28720 tRNA-guanine transglycosylase c158s/c281s/y330c/h333a mutant in complex with tetramethylene sulfoxide (see paper) 23% identity, 55% coverage&def2=7a4kA%20/%20P28720&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::7a4kA)

Ligands: zinc ion; thiolane 1-oxide (7a4kA) Q72TL3 Queuine tRNA-ribosyltransferase from Leptospira interrogans serogroup Icterohaemorrhagiae serovar copenhageni (strain Fiocruz L1-130) 24% identity, 55% coverage&def2=Q72TL3&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q72TL3)

Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory Kumar, Scientific reports 2019 “...(pathogenic, intermediate and saprophytic) while, inner membrane protein CoaX (Q72NP0) and outer membrane protein Tgt (Q72TL3) were present in only pathogenic and intermediate but absent in saprophytic Leptospira spp. Two outer membrane proteins viz . GcvT (Q72VI6) and GatA (Q72SC3) were present in pathogenic and intermediate...” CC1588 queuine tRNA ribosyltransferase (NCBI ptt file) from Caulobacter crescentus CB15 23% identity, 55% coverage&def2=CC1588&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS98409)

Identification of long intergenic repeat sequences associated with DNA methylation sites in Caulobacter crescentus and other alpha-proteobacteria Chen, Journal of bacteriology 2003 “...2876431 3116816 . . . 3116931 3857996 . . . 3858111 CC1588 CC1982 CC2078 CC2187 CC2658 CC2893 CC3604 1 1 1 1 14 17 1 CC1589 CC1983 CC2079 CC2188 CC2659 CC2894...” Q8IJX5 Phosducin-like protein 3, putative from Plasmodium falciparum (isolate 3D7) 30% identity, 24% coverage&def2=Q8IJX5&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q8IJX5)

The malaria parasite chaperonin containing TCP-1 (CCT) complex: Data integration with other CCT proteomes Wilkinson, Frontiers in molecular biosciences 2022 “...Tubulin -chain Q8IAN7 42.5 Tubulin -chain complex Q8I2I3 3.6 Phosducin-like 1 Q8I3U4 32.2 Phosducin-like 2 Q8IJX5 35.8 Phosducin-like 3 A0A143ZZR4 39 WD40 CAF1 Q8IE52 35.8 WD40 CAF1 complex Q8I5D0 3 WD40 U3snoRNA Q8ILZ2 41.2 WD40 NOP10 Q8IAL3 4.4 WD40 mRNA splicing Q8IL37 49.6 WD40 mRNA splicing...” NP_608585 tRNA-guanine transglycosylase from Drosophila melanogaster 22% identity, 67% coverage&def2=NP_608585&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_608585.1)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting...” 2ashA / Q9X1P7 Crystal structure of queuine tRNA-ribosyltransferase (ec 2.4.2.29) (tRNA-guanine (tm1561) from thermotoga maritima at 1.90 a resolution 23% identity, 55% coverage&def2=2ashA%20/%20Q9X1P7&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::2ashA)

Ligand: zinc ion (2ashA) YP_003432953 queuine tRNA-ribosyltransferase (RefSeq) from Hydrogenobacter thermophilus TK-6 22% identity, 55% coverage&def2=YP_003432953&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS10377051)

Phylogenetic position of aquificales based on the whole genome sequences of six aquificales species Oshima, International journal of evolutionary biology 2012 “...putative metalloprotease YP_003431749 diaminopimelate decarboxylase YP_003431809 dihydrodipicolinate reductase YP_003431998 UDP-N-acetylglucosamine 1-carboxyvinyltransferase YP_003432481 ribosomal protein S20 YP_003432953 queuine tRNA-ribosyltransferase YP_003431834 ATP-dependent protease La YP_003431839 tRNA delta(2)-isopentenylpyrophosphate transferase YP_003431873 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase YP_003431915 ribonuclease III YP_003432036 riboflavin synthase alpha chain YP_003432044 DNA polymerase I YP_003432149 2-methylthioadenine synthetase YP_003432165...” SPO2616 tRNA guanosine(34) transglycosylase Tgt from Ruegeria pomeroyi DSS-3 23% identity, 55% coverage&def2=SPO2616&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_011048318.1)

Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium Chan, Frontiers in microbiology 2012 “...racemase/muconate lactonizing enzyme family protein 0.3 SPO2556 Allantoate amidohydrolase 0.2 SPO2592 Beta-lactamase, putative 1.0 0.3 SPO2616 tgt Queuine tRNA-ribosyltransferase 0.7 0.3 SPO3012 Inositol-1-monophosphatase, putative 0.1 0.2 SPO3156 l -threonine aldolase, low-specificity, putative 1.3 0.3 SPO3419 UbiH/UbiF/VisC/COQ6 family ubiquinone biosynthesis hydroxylase 1.9 0.3 SPO3437 Mechanosensitive ion channel...” NP_213895 queuine tRNA-ribosyltransferase (NCBI ptt file) from Aquifex aeolicus VF5 25% identity, 36% coverage&def2=NP_213895&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS25203)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus...” ECH_0445 queuine tRNA-ribosyltransferase (NCBI) from Ehrlichia chaffeensis str. Arkansas 27% identity, 24% coverage&def2=ECH_0445&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS1229843)

Multiple Ehrlichia chaffeensis Genes Critical for Its Persistent Infection in a Vertebrate Host Are Identified by Random Mutagenesis Coupled with In Vivo Infection Assessment. Wang, Infection and immunity 2020 “...236424 + 137/618 5 D3-2 ECH_0368 Dioxygenase family protein 360362 + 243/675 6 s34 C8 ECH_0445 Queuine tRNA-ribosyltransferase 423364 + 352/1,191 7 C1-1 ECH_0475 Signal recognition particle protein 454669 1302/1,347 8 s33 C7 ECH_0525 Hypothetical protein 525880 1037/2,001 9 s34 E3 ECH_0592 Coproporphyrinogen III oxidase, aerobic,...” “...s33 E5 ECH_0251 Hypothetical protein 5 D3-2 ECH_0368 Dioxygenase family protein (oxidoreductase) 6 s34 C8 ECH_0445 Queuine tRNA-ribosyltransferase (protein synthesis) 7 C1-1 ECH_0475 Signal recognition particle protein (protein synthesis) 8 s33 C7 ECH_0525 Hypothetical protein 10 B5-1 ECH_0600 Hypothetical protein 11 D3-1 ECH_0614 Hypothetical protein 14...” PF3D7_1434100 queuine tRNA-ribosyltransferase, putative from Plasmodium falciparum 3D7 27% identity, 22% coverage&def2=PF3D7_1434100&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_001348496.1)

Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii Biddau, PLoS pathogens 2018 “...translation N PF3D7_1302700 PMID: 20016272 TGME49_292320 + + + + + tRNA-guanine transglycosylase translation Y PF3D7_1434100 All apicomplexan homologs have CXXC excluding Cryptosporidium TGME49_311720 + + + BIP protein folding N PF3D7_0917900 PMID 10413671 TGME49_251630 + + slc30a2 transporter Y PF3D7_0715900 Among the putative interactors of...” Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1 Adjalley, BMC genomics 2015 “...in comparison to the parental strain (Fig. 6b ). Several tRNA-ligases (PF3D7_0509600, PF3D7_1349200) and ribosyltransferases (PF3D7_1434100) also displayed higher transcript levels in a stage-specific manner (Additional file 16 : Table S10B,J), suggesting that translation may also be affected when mutant pfcrt expression is lowered (Additional file...”

ACIAD0590 queuine tRNA-ribosyltransferase (RefSeq) from Acinetobacter sp. ADP1 22% identity, 56% coverage&def2=ACIAD0590&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS588069)

iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources Jiang, Frontiers in microbiology 2019 “...0.63 DNA-directed RNA polymerase subunit beta rpoB ACIAD0307 0.49 0.72 0.55 0.58 Queuine tRNA-ribosyltransferase tgt ACIAD0590 0.59 0.74 0.58 0.67 UDP- N -acetylglucosamine 1-carboxyvinyltransferase 2 murA ACIAD0660 0.81 0.74 0.8 0.74 Gamma-glutamyltranspeptidase precursor ggt ACIAD0929 0.34 0.77 0.5 0.41 Bifunctional succinylornithine transaminase/acetylornithine transaminase argD ACIAD1284 0.4...” B6XS84 Queuine tRNA-ribosyltransferase from Bifidobacterium catenulatum DSM 16992 = JCM 1194 = LMG 11043 33% identity, 18% coverage&def2=B6XS84&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=B6XS84)

Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Garnier, Applied and environmental microbiology 2010 (no snippet) PF3D7_1242200 queuine tRNA-ribosyltransferase, putative from Plasmodium falciparum 3D7 41% identity, 11% coverage&def2=PF3D7_1242200&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_001350810.2)

Plasmodium apicoplast tyrosyl-tRNA synthetase recognizes an unusual, simplified identity set in cognate tRNATyr Cela, PloS one 2018 “...20 ]. For example, three putative queuine tRNA-ribosyltransferase are found in EupathDB, one of which (PF3D7_1242200) is predicted to be targeted to the apicoplast. Queuosine and its derivatives are found in bacterial and eukaryal tRNAs with a G34 [ 55 ], and guarantee fidelity and efficiency...” Aminoacylation of Plasmodium falciparum tRNA(Asn) and insights in the synthesis of asparagine repeats Filisetti, The Journal of biological chemistry 2013 “...tRNA ribosyltransferases in the P. falciparum genome (PF3D7_1242200, probably targeted to the apicoplast, and PF3D7_0717400, the putative cytosolic enzyme)...” BSU27710 tRNA-guanine transglycosylase from Bacillus subtilis subsp. subtilis str. 168 NP_390649 queuine tRNA-ribosyltransferase (RefSeq) from Bacillus subtilis subsp. subtilis str. 168 20% identity, 57% coverage&def2=BSU27710&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_390649.1)

A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century Bremer, Microbial biotechnology 2023 “...specific adenosine A34 deaminase 3.5.4.33 BSU27540 tcdA yrvM, csdL tRNA threonylcarbamoyladenosine dehydratase (t(6)A37 dehydratase) 6.1.. BSU27710 tgt _ tRNAguanine transglycosylase 2.4.2.29 BSU00670 tilS yacA, mesJ tRNA(ile2) lysidine synthetase 6.3.4.19 BSU15060 tmcAL ylbM N4acetylcytidine tRNA C34 acetylase (acetyladenylate synthase) 2.3.1.193 BSU02330 trhO ybfQ tRNA uridine(34) hydroxylase 1.14.....” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...E. coli , AAA24667; Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster...” BAB1_1115 Queuine/other tRNA-ribosyltransferase:Queuine tRNA-ribosyltransferase (NCBI) from Brucella melitensis biovar Abortus 2308 BS1330_I1087 tRNA guanosine(34) transglycosylase Tgt from Brucella suis 1330 23% identity, 55% coverage&def2=BAB1_1115&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS1053889)

Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Sternon, Infection and immunity 2018 “...BAB1_1399 BAB1_0096 BAB1_2158 BAB1_1437 BAB1_0162 BAB1_2025 BAB1_1115 BAB1_0477 BAB1_0427 Nucleic acid synthesis and degradation BAB2_0641 BAB2_0640 BAB1_0341...” Comparative genomic analysis between newly sequenced Brucella suis Vaccine Strain S2 and the Virulent Brucella suis Strain 1330 Di, BMC genomics 2016 “...1 b A IS711, transposase orfA 29 BS1330_I1083 1 b P luciferase family protein 30 BS1330_I1087 1 b E tgt 31 BS1330_I1302 1 b I cob N 32 BS1330_I1971 1 b L short chain dehydrogenase 33 BS1330_I2107 1 b I hypothetical protein 34 BS1330_II0476 78 pyridine...” PBANKA_1204800 phosducin-like protein 3 from Plasmodium berghei ANKA 29% identity, 25% coverage&def2=PBANKA_1204800&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_034422726.1)

Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity Kooistra, PloS one 2018 “...malaria parasite P . berghei as members of the phosducin-like family of proteins (PhLP), specifically PBANKA_1204800, PBANKA_0519700, and PBANKA_1231200 [ 10 , 16 ]. PBANKA_1204800 was designated as PhLP-1 as it was the first PhLP we identified in a Plasmodium species [ 10 ]. However, re-analysis...” “...the P . berghei PhLP family as follows: PBANKA_1231200 as PbPhLP-1, PBANKA_0519700 as PbPhLP-2, and PBANKA_1204800 as PbPhLP-3 ( Table 1 ). Here we report on the characterization of PbPhLP-3, which shows the highest conservation among eukaryotes. 10.1371/journal.pone.0209699.t001 Table 1 PhLP in P . berghei ....” SAR1719 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus MRSA252 P66905 Queuine tRNA-ribosyltransferase from Staphylococcus aureus (strain N315) Q2FXT6 Queuine tRNA-ribosyltransferase from Staphylococcus aureus (strain NCTC 8325 / PS 47) SA1465 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus N315 SAOUHSC_01748 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus NCTC 8325 SAUSA300_1595 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus USA300_FPR3757 USA300HOU_1638 queuine tRNA-ribosyltransferase (RefSeq) from Staphylococcus aureus subsp. aureus USA300_TCH1516 SACOL1694 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus aureus subsp. aureus COL CR496_01541 tRNA guanosine(34) transglycosylase Tgt from Staphylococcus aureus 30% identity, 20% coverage&def2=SAR1719&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS667021)

Extensive re-modelling of the cell wall during the development ofStaphylococcus aureusbacteraemia Douglas, 2023 The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications Kenny, PloS one 2009 “...trmD putative tRNA (guanine-7-)-methyltransferase 2.80 1.69E-03 SAR1485 rpsA putative 30S ribosomal protein S1 2.91 4.91E-02 SAR1719 tgt queuine tRNA-ribosyltransferase 2.01 4.96E-02 SAR1720 queA S-adenosylmethionine:tRNA ribosyltransferase-isomerase 2.49 1.44E-02 SAR2309 rpoA DNA-directed RNA polymerase subunit alpha 2.44 9.73E-03 Peptidoglycan Synthesis SAR1048 purD putative phosphoribosylamineglycine ligase 3.98 2.08E-02 SAR1762...” Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells. Groehler, Chemical research in toxicology 2016 “...3 4 Inflammatory Response 10835.0 81 P06702 Protein S100 A9 45 4 6 13242.3 82 P66905 Hemoglobin subunit alpha 22 2 3 Oxygen Transport 15257.6 83 Q13765 Nascent polypeptide-associated complex subunit alpha 26 4 5 Protein Transport 23383.3 84 Q96FZ7 Charged multivesicular body protein 6 10...” Antibacterial Activity of Juglone against Staphylococcus aureus: From Apparent to Proteomic. Wang, International journal of molecular sciences 2016 “...4 4 50.20 0.761 0.022 Q2G1X5 queuosine biosynthesis protein SAOUHSC_00720 3 3 16.00 0.831 0.000 Q2FXT6 queuine tRNA-ribosyltransferase tgt 2 2 43.30 0.603 0.008 Protein synthesis Q2FW17 50s ribosomal protein l24 rplX 2 2 11.50 1.225 0.001 Q2FW29 50s ribosomal protein l36 rpmJ 1 1 4.30...” Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover Anderson, FEMS immunology and medical microbiology 2010 “...2.5 SA1394 hypothetical protein sa_c2050s1762_a_at 3.6 2.5 2.5 SA1464 hypothetical protein sa_c2054s1766_a_at 3.0 2.5 2.5 SA1465 hypothetical protein sa_c2058s1770_at 2.1 2.5 2.5 SA1466 hypothetical protein sa_c2063s1774_a_at 3.4 2.5 2.5 SA1467 hypothetical protein sa_c2066s1777_a_at 36.6 2.5 ND SA1468 hypothetical protein sa_c2109s1814_a_at 29.3 2.5 ND SA1481...” Twenty-seven-nucleotide repeat insertion in the rplV gene confers specific resistance to macrolide antibiotics in Staphylococcus aureus Han, Oncotarget 2018 “...L SAOUHSC_01583 conserved hypothetical phage protein 1508580 of CP000253.1 C 530 G A 177 G SAOUHSC_01748 queuine tRNA-ribosyltransferase 1653225 of CP000253.1 A 184 G R 62 G SAOUHSC_02163 conserved hypothetical phage protein 2031924 of CP000253.1 G to A SAOUHSC_R0005 16S ribosomal RNA 2243146 of CP000253.1 A...” Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Genetic Factors Involved in Human Endothelial Cells Damage, an Important Phenotype Correlated with Persistent Endovascular Infection Xiao, Antibiotics (Basel, Switzerland) 2022 “...hypothetical protein 20.82 4.02 SAUSA300_0141 deoB phosphopentomutase 20.69 9.71 SAUSA300_1684 hypothetical hypothetical protein 20.53 11.18 SAUSA300_1595 tgt queuine tRNA-ribosyltransferase 20.53 9.07 SAUSA300_0442 hypothetical hypothetical protein 20.45 3.70 SAUSA300_0744 lgt prolipoprotein diacylglyceryl transferase 20.44 5.61 SAUSA300_1576 recD2 helicase, RecD/TraA family 20.41 6.63 SAUSA300_2088 luxS S-ribosylhomocysteinase 20.40 2.33...” Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress Imber, Antioxidants & redox signaling 2018 “...USA300HOU_1732 pheT2 Phenylalanine-tRNA ligase beta subunit Cys167 a B 2.0 13.79 12.38 0.29 26.17 0.05 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys12 a B 15.2 12.73 9.32 0.07 22.04 0.42 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys281 a B 2.5 18.74 13.36 0.25 32.10 0.14 USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys174...” Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus Howden, Antimicrobial agents and chemotherapy 2008 “...h in BHIB with increasing concen- 2.2-kb product, SACOL1694 1-kb product, SACOL2314 1.3-kb product, SACOL2600 582-bp product, intergenic region To generate an...” “...A SACOL0971 rexA, exonuclease Synonymous T to A SACOL1694 tgt, queuine tRNAribosyltransferase F365Y C to T SACOL2314 Sodium/bile acid symporter family protein...” Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis Suligoy, Frontiers in cellular and infection microbiology 2018 “...? Hypothetical protein snp Synonymous variant Unknown CR496_00965 atl Bifunctional autolysin snp Missense variant Hydrolase CR496_01541 tgt Queuine tRNA-ribosyltransferase ins Frameshift variant tRNA Modification CR496_01829 pfbA Plasmin and fibronectin-binding protein A snp Synonymous variant Fibronectin binding protein CR496_01861 mepM Murein DD-endopeptidase MepM snp Missense variant Metal...” Q55983 Queuine tRNA-ribosyltransferase from Synechocystis sp. (strain PCC 6803 / Kazusa) 39% identity, 11% coverage&def2=Q55983&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q55983)

Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Edelstein, Proceedings of the National Academy of Sciences of the United States of America 1999 SAA6008_01608 tRNA guanosine(34) transglycosylase Tgt from Staphylococcus aureus subsp. aureus str. JKD6008 31% identity, 18% coverage&def2=SAA6008_01608&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_001112046.1)

Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR Howden, PLoS pathogens 2011 “...A (976097) SAA6008_00920 addA ATP-dependent nuclease subunit A Silent 5 a T to A (1721456) SAA6008_01608 tgt Queuine tRNA-ribosyltransferase F365Y 6 C to T (2391832) Intergenic 7 a C to T (2470905) SAA6008_02357 Sodium/bile acid symporter family protein P128S. 8 a G to A (2754296) SAA6008_02622...” MSMEG_6313 tRNA guanosine(34) transglycosylase Tgt from Mycolicibacterium smegmatis MC2 155 MSMEG_6313 queuine tRNA-ribosyltransferase (NCBI) from Mycobacterium smegmatis str. MC2 155 35% identity, 17% coverage&def2=MSMEG_6313&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_003897733.1)

Key Transitions in the Evolution of Rapid and Slow Growing Mycobacteria Identified by Comparative Genomics Bachmann, Frontiers in microbiology 2019 “...PstB COG1117 ABC-type phosphate transport system, ATPase component MSMEG_6306 GlnS COG0008 Glutamyl- and glutaminyl-tRNA synthetases MSMEG_6313 Tgt COG0343 Queuine/archaeosine tRNA-ribosyltransferase MSMEG_6899 COG5650 Predicted integral membrane protein MSMEG_6914 GDB1 COG3408 Glycogen debranching enzyme Locus tags are from Mycolicibacterium smegmatis str. MC2 155 genome (NC_008596). Genes are present...” BMI_I1103 queuine tRNA-ribosyltransferase (RefSeq) from Brucella microti CCM 4915 BMEI0890 QUEUINE TRNA-RIBOSYLTRANSFERASE (NCBI ptt file) from Brucella melitensis 16M BME_RS04435 tRNA guanosine(34) transglycosylase Tgt from Brucella melitensis bv. 1 str. 16M 23% identity, 55% coverage&def2=BMI_I1103&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS7629720)

Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis Ouahrani-Bettache, Virulence 2019 “...mutations were intragenic and affected the following genes: BMI_I525 (2 SNVs), BMI_I539 (1 InDel) and BMI_I1103 (1 SNV), encoding a transposase (ISBm1), a glycosyltransferase ( wbkE ) and a queuine tRNA-ribosyltransferase ( tgt ), respectively. The mutation found in wbkE was regarded as the most plausible...” Ultrasensitive Detection of Pathogenic Bacteria by Targeting High Copy Signature Genes Dong, Frontiers in veterinary science 2022 “...tu (refseq) BMEI0755 1,176 1,176 2 I + 786042 787217 Protein translation elongation factor tu BMEI0890 1,134 1,134 2 I + 921879 923012 Queuine trna-ribosyltransferase BMEI0902 231 231 2 I + 935275 935505 Recombinase BMEI0903 1,344 1,344 2 I + 935903 937246 Hypothetical protein BMEI0904 246...” Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions Rossetti, Frontiers in microbiology 2017 “...kinase 3 Yes BSS MAPK, GnRH, Toll-like receptor, Fc epsilon RI signaling, Integrin-mediated cell adhesion BMEI0890 (BME_RS04435, tgt) tRNA guanosine transglycosylase 0.159 RAP1A RAP1A, member of RAS oncogene family No BSS MAPK, Integrin-mediated cell adhesion, Leukocyte transendothelial migration BMEI1077 (BME_RS05395) Immunogenic membrane protein YajC 0.206 NRAS...” Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions Rossetti, Frontiers in microbiology 2017 “...3 Yes BSS MAPK, GnRH, Toll-like receptor, Fc epsilon RI signaling, Integrin-mediated cell adhesion BMEI0890 (BME_RS04435, tgt) tRNA guanosine transglycosylase 0.159 RAP1A RAP1A, member of RAS oncogene family No BSS MAPK, Integrin-mediated cell adhesion, Leukocyte transendothelial migration BMEI1077 (BME_RS05395) Immunogenic membrane protein YajC 0.206 NRAS Neuroblastoma...” tgt / Q183P1 preQ1 tRNA-ribosyltransferase (EC 2.4.2.29) from Clostridioides difficile (strain 630) (see paper) 23% identity, 53% coverage&def2=tgt%20/%20Q183P1&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=metacyc::G12WB-2962-MONOMER)

CD2802 queuine tRNA-ribosyltransferase (RefSeq) from Clostridium difficile 630 23% identity, 53% coverage&def2=CD2802&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS3375287)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) BMEI1003 QUEUINE TRNA-RIBOSYLTRANSFERASE (NCBI ptt file) from Brucella melitensis 16M 31% identity, 19% coverage&def2=BMEI1003&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS179797)

Ultrasensitive Detection of Pathogenic Bacteria by Targeting High Copy Signature Genes Dong, Frontiers in veterinary science 2022 “...I + 938429 938650 Hypothetical protein BMEI0906 318 318 2 I 939309 938992 Hypothetical protein BMEI1003 609 609 2 I 1044479 1043871 Queuine trna-ribosyltransferase BMEI1399 309 309 2 I 1454879 1454571 Transposase BMEI1411 309 309 2 I 1460411 1460103 Transposase BMEI1412 276 276 2 I 1460530...” Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands Rajashekara, Journal of bacteriology 2008 “...in Brucella virulence (7, 14), and a tRNA-ribosyltransferase (BMEI1003) (Fig. 3). To determine the contribution of genes within this island to pathogenesis, we...” SERP1203 queuine tRNA-ribosyltransferase (NCBI) from Staphylococcus epidermidis RP62A 31% identity, 18% coverage&def2=SERP1203&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS915439)

Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis Gonçalves, Frontiers in microbiology 2022 “...Staphylococcal Accessory Regulator family SERP1849/76/79 SarR/Z/V t-RNA modification NADPH-dependent 7-cyano-7-deazaguanine reductase SERP0394 queF Queuine trna-ribosyltransferase SERP1203 tgt Epoxyqueuosine reductase QueH SERP2147 queH tRNA (guanine-N(1)-)-methyltransferase SERP0806 trmD S. epidermidis metabolic and biological activities induced at skin pH Promotion of bacterial growth We found that S. epidermidis 19N...” Cj1010 queuine tRNA-ribosyltransferase (NCBI ptt file) from Campylobacter jejuni subsp. jejuni NCTC 11168 26% identity, 23% coverage&def2=Cj1010&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS46889)

Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni Hwang, Journal of bacteriology 2012 “...Translation, ribosomal structure, and biogenesis tgt Cj1010 Queuine tRNA-ribosyltransferase -2.114 0.01636 valS Cj0775c Valyl-tRNA synthetase -2.732 0.017 greA...” Q8GAA6 Queuine tRNA-ribosyltransferase from Synechococcus elongatus (strain ATCC 33912 / PCC 7942 / FACHB-805) 31% identity, 16% coverage&def2=Q8GAA6&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q8GAA6)

Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins Guerreiro, Molecular & cellular proteomics : MCP 2014 “...at UNIV OF CALIFORNIA on August 13, 2019 Q31LD0 Q8GAA6 Q31P93 Q31NG2 Q31KC4 Q31SA6 Q31PT9 Q31N33 Q31QG0 Q31ME3 Q31KI8 Q31RN5 Q31KQ3 Q31R35 Q31LF7 Q31RH5 Q31LE3...” SO3113 queuine tRNA-ribosyltransferase (NCBI ptt file) from Shewanella oneidensis MR-1 28% identity, 22% coverage&def2=SO3113&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS202229)

Stress responses of shewanella Yin, International journal of microbiology 2011 “...hypothetical protein 44 16 CTAGGCATTTGAGTTGGAACCCTATTTTT 9.1 SO4287 motA chemotaxis motA protein 127 99 CTTGAATTTAGTAGATTTTCCTTATAATG 9.1 SO3113 tgt queuine tRNA-ribosyltransferase 96 67 GTTGAACCTTTTAGATCTGTCCCTATCTCT 9 Genome screening with 32 weight matrix is performed using RSAT at http://rsat.ulb.ac.be/rsat/RSAT_home.cgi [ 23 ]. Genes with a weight score over 9 are...” H375_8000 tRNA guanosine(34) transglycosylase Tgt from Rickettsia prowazekii str. Breinl 31% identity, 19% coverage&def2=H375_8000&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_010886359.1)

Transcriptional profiling of Rickettsia prowazekii coding and non-coding transcripts during in vitro host-pathogen and vector-pathogen interactions Schroeder, Ticks and tick-borne diseases 2017 “...protein H375_3930 3.74 hypothetical protein H375_2360 3.73 RalF protein H375_2200 3.72 rare lipoprotein A precursor H375_8000 3.71 tRNA-guanine transglycosylase H375_1890 3.71 hypothetical protein H375_7280 3.65 NADH-ubiquinone oxidoreductase chain I H375_4740 3.65 Aspartyl-tRNA(Asn) amidotransferase subunit C H375_4180 3.65 Chaperone protein HscB H375_7380 6.96 hypothetical protein H375_6130 6.52...” XHV734_1945 tRNA guanosine(34) transglycosylase Tgt from Xanthomonas hortorum pv. vitians 23% identity, 55% coverage&def2=XHV734_1945&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_187433825.1)

A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians Morinière, mSystems 2022 “...trpA Tryptophan synthase alpha chain Psyr_0033 RS_RS09955 ATU_RS00095 XHV734_1808 purK N5-carboxyaminoimidazole ribonucleotide synthase ATU_RS17455 Dda3937_01683 XHV734_1945 tgt tRNA-guanine transglycosylase RS_RS13575 XHV734_1977 gdh NAD-specific glutamate dehydrogenase ATU_RS13460 XHV734_2148 purM Phosphoribosylaminoimidazole synthetase ATU_RS05630 Dda3937_02515 XHV734_2154 sodA Superoxide dismutase, Mn ATU_RS04315 XHV734_2180 Dihydroorotase ATU_RS06435 XHV734_2250 UDP- N -acetylmuramyl pentapeptide...” LSA0377 Queuine tRNA-ribosyltransferase (NCBI) from Lactobacillus sakei subsp. sakei 23K 22% identity, 56% coverage&def2=LSA0377&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS1099338)

Global transcriptome response in Lactobacillus sakei during growth on ribose McLeod, BMC microbiology 2011 “...rplB 50S ribosomal protein L2 0.6 LSA1765 rpsJ 30S ribosomal protein S10 -0.7 Protein synthesis LSA0377 tgt Queuine tRNA-ribosyltransferase -0.6 LSA1546 gatB Glutamyl-tRNA amidotransferase, subunit B -0.5 LSA1547 gatA Glutamyl-tRNA amidotransferase, subunit A -0.5 -0.5 RNA restriction and modification LSA0437 lsa0437 Hypothetical protein with an RNA-binding...” SMc01206 PROBABLE QUEUINE TRNA-RIBOSYLTRANSFERASE (TRNA-GUANINE TRANSGLYCOSYLASE) PROTEIN (NCBI ptt file) from Sinorhizobium meliloti 1021 31% identity, 21% coverage&def2=SMc01206&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS124261)

Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula Marchetti, PloS one 2013 “...additional genes belonging to this pathway ( Fig. 4 ) we identified queF (SMc02723), tgt (SMc01206) and queA (SMc01207) genes on the S. meliloti main chromosome. These genes were individually inactivated and corresponding mutants triggered reduced HeLa cell deformations 48 hpi in regular HeLa culture medium...” SPD_1868 queuine tRNA-ribosyltransferase (NCBI) from Streptococcus pneumoniae D39 30% identity, 20% coverage&def2=SPD_1868&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS2018704)

Pivotal Roles for Ribonucleases in Streptococcus pneumoniae Pathogenesis Sinha, mBio 2021 “...c bguC PTS system, IIA component 2.40 4.46E07 SPD_1865 Putative Zn-dependent alcohol dehydrogenase 2.12 7.51E05 SPD_1868 tgt tRNA-guanine transglycosylase 2.05 1.34E05 SPD_1899 Glutamine amidotransferase, class 1 2.45 3.28E04 SPD_1910 h pstS1 Phosphate ABC transporter periplasmic-phosphate-binding protein PstS1 3.87 5.51E08 SPD_1911 h pstC1 Phosphate transport system permease...” XF0223 queuine tRNA-ribosyltransferase (RefSeq) from Xylella fastidiosa 9a5c 25% identity, 32% coverage&def2=XF0223&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS48937)

Xylella fastidiosa gene expression analysis by DNA microarrays Travensolo, Genetics and molecular biology 2009 “...synthetase 0.62 XF0169 tyrS Tyrosyl-tRNA synthetase 0.59 XF2178 holA DNA polymerase III, delta subunit -1.85 XF0223 tgt/vacC Queuine tRNA-ribosyltransferase -1.70 XF1909 mutY A/G-specific adenine glycosylase -1.23 XF2672 purE Phosphoribosylaminoimidazole carboxylase, catalytic subunit -1.10 XF0354 recG ATP-dependent DNA helicase -0.89 XF0676 holB DNA polymerase III, delta subunit...” STM0405 tRNA-guanine transglycosylase (NCBI ptt file) from Salmonella typhimurium LT2 26% identity, 22% coverage&def2=STM0405&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS147781)

Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis Fong, Microbial genomics 2023 Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and Global Epidemic pathovariants of Salmonella Enteritidis Fong, 2022 SEN0388 queuine tRNA-ribosyltransferase; tRNA-guanine transglycosylase (RefSeq) from Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 26% identity, 22% coverage&def2=SEN0388&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS5795126)

Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis Fong, Microbial genomics 2023 Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and Global Epidemic pathovariants of Salmonella Enteritidis Fong, 2022 HP0281 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Helicobacter pylori 26695 27% identity, 18% coverage&def2=HP0281&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS18701)

Genomic differentiation within East Asian Helicobacter pylori. You, Microbial genomics 2022 “...Vitamin B5 synthesis Interaction between cleaved peptides bioD HP0029 Micronutrient synthesis Vitamin B7 synthesis tgt HP0281 S4A (iii) Micronutrient synthesis Q-base synthesis; Q-base on tRNA affects translation accuracy Active site rhoD HP1223 S4B Detox Rhodanese detoxifying cyanide generated in microbiome rkiP HP0218 S2B Oncoprotein Mimic of...” Metabolism and genetics of Helicobacter pylori: the genome era Marais, Microbiology and molecular biology reviews : MMBR 1999 “...queA HP1513 HP1148 HP1415 selA trmD miaA HP0281 tgt Methionyl-tRNA formyltransferase Peptidyl-tRNA hydrolase Pseudouridylate synthase I Protein component of...” Q71ZE0 Queuine tRNA-ribosyltransferase from Listeria monocytogenes serotype 4b (strain F2365) 25% identity, 22% coverage&def2=Q71ZE0&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q71ZE0)

Proteomic Exploration of Listeria monocytogenes for the Purpose of Vaccine Designing Using a Reverse Vaccinology Approach Srivastava, International journal of peptide research and therapeutics 2021 “...0.551 Non-allergen 6 Q71Y34 0.54 Non-allergen 7 Q71XR2 0.4524 Non-allergen 8 Q71VT6 0.4088 Non-allergen 9 Q71ZE0 1.318 Non-allergen 10 Q71XX6 1.042 Non-allergen 11 Q71Y46 0.679 Non-allergen 12 Q71WT3 0.482 Non-allergen 13 Q71WP0 1.372 Non-allergen 14 Q720A5 0.44 Non-allergen 15 Q71WP7 0.675 Non-allergen 16 Q71WT2 0.574 Non-allergen...” “...DRB1_0101 AIFIRAPYL 886.2 1.4467 Antigen DRB1_1301 LAFKVKHSS 48.5 1.2632 Antigen DRB1_1301 IFIRAPYLI 62.4 1.6671 Antigen Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen DRB1_0701 FDCVLPTRI 25.3 1.5369 Antigen DRB1_0701 CEETFGIRL 66 2.4185 Antigen Q71XX6 DRB1_0701 FKATGGKRI 25.8 1.4894 Antigen DRB1_1301 VILQVFYFK 63.3...” tgt / AAA24667.1 transfer RNA-guanine transglycosylase from Escherichia coli (see paper) 26% identity, 22% coverage&def2=tgt%20/%20AAA24667.1&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=ENA::AAA24667.1)

Q54177 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Shigella flexneri (see paper) NP_706294 queuine tRNA-ribosyltransferase (tRNA-guanine transglycosylase) (Guanine insertion enzyme) (Virulence-associated protein VACC) (NCBI ptt file) from Shigella flexneri 2a str. 301 26% identity, 22% coverage&def2=Q54177&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q54177)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Novel genomic island modifies DNA with 7-deazaguanine derivatives Thiaville, Proceedings of the National Academy of Sciences of the United States of America 2016 “...Z. mobilis bTGT, Q8GM47; Shigella flexneri bTGT, Q54177; Bacillus subtilis bTGT, L8AMH3; Aquifex aeolicus bTGT, O67331; P. horikoshii aTGT, O58843;...” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...following accession numbers ( E. coli , AAA24667; Z. mobilis , T46898; Shigella flexneri , NP_706294; Bacillus subtilis , NP_390649; Aquifex aeolicus , NP_213895; Methanosarcina acetivorans , NP_619281; M. mazei , NP_633125; Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans...” Tgt tRNA-guanine transglycosylase (EC 2.4.2.29) from Escherichia coli K-12 substr. MG1655 (see 6 papers) TGT_ECOLI / P0A847 Queuine tRNA-ribosyltransferase; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.29 from Escherichia coli (strain K12) (see 3 papers) P0A847 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Escherichia coli (see paper) tgt / P0A847 tRNA-guanine transglycosylase (EC 2.4.2.29) from Escherichia coli (strain K12) (see 4 papers) NP_414940 tRNA-guanine transglycosylase from Escherichia coli str. K-12 substr. MG1655 b0406 queuine tRNA-ribosyltransferase (NCBI) from Escherichia coli str. K-12 substr. MG1655 26% identity, 22% coverage&def2=Tgt&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=P0A847)

function: Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form the product. After dissociation, two additional enzymatic reactions on the tRNA convert PreQ1 to queuine (Q), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2-cyclopenten-1- yl)amino)methyl)-7-deazaguanosine). catalytic activity: 7-aminomethyl-7-carbaguanine + guanosine(34) in tRNA = 7- aminomethyl-7-carbaguanosine(34) in tRNA + guanine (RHEA:24104) cofactor: Zn(2+) (Binds 1 zinc ion per subunit.) subunit: Homodimer. Within each dimer, one monomer is responsible for RNA recognition and catalysis, while the other monomer binds to the replacement base PreQ1. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Novel genomic island modifies DNA with 7-deazaguanine derivatives Thiaville, Proceedings of the National Academy of Sciences of the United States of America 2016 “...H1RRG1; K. radiotolerans TgtA5, A6WGA1; E. coli bTGT, P0A847; Z. mobilis bTGT, Q8GM47; Shigella flexneri bTGT, Q54177; Bacillus subtilis bTGT, L8AMH3; Aquifex...” Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Chen, Nucleic acids research 2011 GeneRIF: phylogenetic and kinetic analyses support the conclusion that all tRNA-guanine transglycosylases have divergently evolved to specifically recognize their cognate heterocyclic substrates. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Eric, Biochemical and biophysical research communications 2011 GeneRIF: mutation of key residues in the E. coli TGT active site can ''open up'' the site to allow for the binding of competitive pteridine inhibitors. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity. Todorov, Biochemistry 2006 GeneRIF: The key role of aspartate 143 in maintaining the anticodon identities of TGT queuine-containing tRNAs is confirmed. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure. Garcia, Journal of molecular biology 1993 (PubMed) GeneRIF: N-terminus verified by Edman degradation on complete protein 5-azacytidine induces transcriptome changes in Escherichia coli via DNA methylation-dependent and DNA methylation-independent mechanisms Militello, BMC microbiology 2016 “...ribosomal subunit protein S9 1.77 3.95E-04 b3739 atpI ATP synthase, membrane-bound accessory factor 1.68 7.67E-04 b0406 tgt tRNA-guanine transglycosylase; queuosine biosynthesis; zinc metalloprotein 1.66 1.97E-03 b3735 atpH ATP synthase subunit delta, membrane-bound, F1 sector 1.66 1.70E-03 b4200 rpsF 30S ribosomal subunit protein S6; suppressor of dnaG-Ts...” Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification Miles, Proceedings of the National Academy of Sciences of the United States of America 2011 “...(b2777), preQ0 synthethase (b0444), preQ0 reductase (b2794), and Tgt (b0406) lead to disappearance of both Q and oQ from RNA. GCH I is an essential gene for...” Microarray analysis of orthologous genes: conservation of the translational machinery across species at the sequence and expression level Jiménez, Genome biology 2003 “...and protein export b0405 No COG0809 J S -adenosylmethionine:tRNA ribosyltransferase-isomerase tRNA modification and protein export b0406 No COG0343 J Queuine tRNA-ribosyltransferase tRNA modification and protein export b0407 No COG1862 N ORF, hypothetical protein tRNA modification and protein export b0408 No COG0342 N Protein-export membrane protein SecD...” PXO_00525 queuine tRNA-ribosyltransferase (RefSeq) from Xanthomonas oryzae pv. oryzae PXO99A 23% identity, 55% coverage&def2=PXO_00525&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS5514016)

Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis Park, The plant pathology journal 2016 “...other group J (translation, ribosomal structure and biogenesis) 188577392 PXO_01601 Glutathione synthetase 1.56 H 188576286 PXO_00525 Queuine tRNA-ribosyltransferase 188578674 PXO_03147 ATP-dependent RNA helicase 1.75 L, K K (transcription) 188578888 PXO_02929 Chromosome partitioning protein 1.63 188577000 PXO_06209 RNA polymerase sigma factor FliA N (cell motility)...”

BB0809 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Borrelia burgdorferi B31 28% identity, 21% coverage&def2=BB0809&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS44451)

Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America Qiu, Emerging infectious diseases 2008 “...R-CCCGTTAACAAATAGAC Main chromosome (555 K) BB0622 ( ackA ) F-TTGTCAAATACAAAAGG, R-AATGTCTTCAAGAATGG Main chromosome (649 K) BB0809 ( tgt ) F-ATGTTTAGTGTAATCAAGAATG, R-ATCGAAATTTTCCTCTTCATAC Main chromosome (855 K) BBA24 ( dpbA ) F1-TAATGTTATGATTAAATG, F2-ATGAATAAATATCAAAAAAC, R-GAAATTCCAAATAACATC lp54 BBB19 ( ospC ) F-CCGTTAGTCCAATGGCTCCAG, R-ATGCAAATTAAAGTTAATATC cp26 BBD14 F-ATGATAATAAAAATAAAAAATAATG, R-ATTTTGATTAATTTTAATTTTGCTG lp17 *B31 open...” Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals Brooks, Infection and immunity 2003 “...[B. burgdorferi]) BBG19 (hypothetical protein) BB0809 (tRNA-guanine transglycosylase [tgt] [Zymomonas mobilis]) BB0844 (hypothetical protein) BBQ63...” llmg_0164 queuine tRNA-ribosyltransferase (NCBI) from Lactococcus lactis subsp. cremoris MG1363 27% identity, 20% coverage&def2=llmg_0164&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS2125616)

Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR Pinto, PloS one 2011 “...glycosyl transferase, being regulated by CesRS. The genes ftsH ( llmg_0021 ) and tgt ( llmg_0164 ), both of which contain a putative CesR motif in their promoter region, were up-regulated in our study and are therefore likely members of the regulon. Also, our data indicates...” APL_0723 queuine tRNA-ribosyltransferase (NCBI) from Actinobacillus pleuropneumoniae L20 25% identity, 20% coverage&def2=APL_0723&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS2124067)

Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential Klitgaard, BMC genomics 2010 “...of murein hydrolase LrgA R -1.11 APL_0779 - Putative effector of murein hydrolase M -0.90 APL_0723 tgt Queuine tRNA-ribosyltransferase J -0.15 APL_0689 + torY Cytochrome c-type protein C -2.30 APL_0688 + torZ Trimethylamine-N-oxide reductase precursor C -1.61 APL_0607 + nfnB Putative NAD(P)H nitroreductase C -0.54 APL_0446...” Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae Labrie, Veterinary research 2010 “...pseudouridine synthase B 1.742 APL_1383 trmB tRNA (guanine-N(7)-)-methyltransferase 1.756 APL_0574 APL_0574 tRNA-specific adenosine deaminase 1.778 APL_0723 Tgt Queuine tRNA-ribosyltransferase 1.937 Purines, pyrimidines, nucleosides, and nucleotides APL_0958 purH Bifunctional purine biosynthesis protein PurH 1.856 APL_0593 guaB Inosine-5-monophosphate dehydrogenase 1.485 APL_1343 Cdd Cytidine deaminase 1.278 APL_1014 deoD Purine...” VFMJ11_2103 queuine tRNA-ribosyltransferase (RefSeq) from Vibrio fischeri MJ11 VFMJ11_2103 tRNA guanosine(34) transglycosylase Tgt from Aliivibrio fischeri MJ11 20% identity, 55% coverage&def2=VFMJ11_2103&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS7071551)

Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. Sabrina, eLife 2017 “...1.0 10.90 0.0335 Nitrate reductase catalytic subunit NapA VFMJ11_2045 1.1 5.71 0.0078 0.5 5.85 0.4159 VFMJ11_2103 0.9 9.12 0.0017 0.6 8.78 0.2201 Queuine tRNA-ribosyltransferase tgt VFMJ11_2111 1.5 3.60 0.0002 1.0 3.74 0.2591 Protein YgiW VFMJ11_2127 1.0 9.24 0.0018 0.7 8.93 0.1727 Peptidase U32 VFMJ11_2165 1.2 4.76...” AO090206000067 No description from Aspergillus oryzae RIB40 34% identity, 12% coverage&def2=AO090206000067&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=XP_001826569.1)

Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae Inglis, BMC microbiology 2013 “...AO090124000048 AO090124000035 - AO090124000040 ECS, FA ECS AO090206000074 cluster AO090206000074 AO090206000075 - AO090206000074 AO090206000082 - AO090206000067 AO090206000074 - AO090206000072 ECS, IGD ECS, IGD AO090701000530 cluster AO090701000530 AO090701000525 - AO090701000543 AO090701000525 - AO090701000539 AO090701000525 - AO090701000530 ECS, IGD ECS, IGD AO090701000600 cluster AO090701000600 AO090701000600 - AO090701000603 AO090701000912...” HSM_0302 queuine tRNA-ribosyltransferase (RefSeq) from Haemophilus somnus 2336 25% identity, 24% coverage&def2=HSM_0302&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS6797546)

Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336 Subhadra, PloS one 2023 “...310 Y Y HSM_0292 HSM_0293 D [ 8 ] HS27 325426 325495 70 Y - HSM_0302 HSM_0303 ND This work HS30 368822 369085 264 Y Y HSM_0336 HSM_0337 ND This work HS31 382931 383420 490 Y - HSM_0346 HSM_0347 A [ 8 ] HS32 385627 385785...” HSM_0302 tRNA guanosine(34) transglycosylase Tgt from Histophilus somni 2336 25% identity, 24% coverage&def2=HSM_0302&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_041605219.1)

Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336 Subhadra, PloS one 2023 “...310 Y Y HSM_0292 HSM_0293 D [ 8 ] HS27 325426 325495 70 Y - HSM_0302 HSM_0303 ND This work HS30 368822 369085 264 Y Y HSM_0336 HSM_0337 ND This work HS31 382931 383420 490 Y - HSM_0346 HSM_0347 A [ 8 ] HS32 385627 385785...” tgt / O84196 tRNA-guanosine34 queuine transglycosylase (EC 2.4.2.64) from Chlamydia trachomatis (strain D/UW-3/Cx) (see paper) O84196 Queuine tRNA-ribosyltransferase from Chlamydia trachomatis (strain D/UW-3/Cx) CT193 Queuine tRNA Ribosyl Transferase (NCBI ptt file) from Chlamydia trachomatis D/UW-3/CX 26% identity, 22% coverage&def2=tgt%20/%20O84196&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=O84196)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Culture-independent sequence analysis of Chlamydia trachomatis in urogenital specimens identifies regions of recombination and in-patient sequence mutations Putman, Microbiology (Reading, England) 2013 “...CT869 CT872 D/13-96 F/2-93 F/6-94 F/11-96 CT833 CT835 CT836 CT193 CT837 CT838 CT194 CT195 Fig. 4. Genome maps of clinical isolates examined in this study. Each...” Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates Almeida, Journal of bacteriology 2012 “...(RT-PCR) to determine if ct058 and ct059, or ct192 and ct193, are part of the same transcriptional unit. For this, RNA was isolated from HeLa 229 cells infected...” “...as these genes could be cotranscribed with ct059 or ct193, respectively (Fig. 5A). Therefore, we used RT-PCR with a cDNA template generated from total RNA of...” TC0465 queuine tRNA-ribosyltransferase (NCBI ptt file) from Chlamydia muridarum Nigg 33% identity, 12% coverage&def2=TC0465&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS370780)

Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability Dimond, Molecular microbiology 2021 “...tc0463 Conserved hypothetical protein 80/98 78 R tc0464 inc Inclusion membrane protein 46/62 59 R tc0465 tgt Queuine tRNA-ribosyltransferase 91/94 0 R tc0466 mgtE Magnesium transporter 99/99 0 R tc0468 Conserved hypothetical protein 71/84 0 R tc0469 inc Inclusion membrane protein 57/73 32 R tc0470 tsaD...” HI0244 tRNA-guanine transglycosylase (tgt) (NCBI ptt file) from Haemophilus influenzae Rd KW20 24% identity, 22% coverage&def2=HI0244&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS6603)

The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon Whitby, BMC genomics 2009 “...30.77 HI0206 -2.25 -2.18 -2.09 -4.89 -1.60 -2.53 HI0230 2.91 5.42 2.51 3.10 2.31 2.67 HI0244 2.59 10.47 1.87 3.13 2.30 4.51 HI0251 -1.99 1.18 -1.69 -3.12 -2.75 -1.16 HI0252 -2.45 1.15 -1.87 -3.90 -3.02 -2.56 HI0257 -2.27 -5.52 -1.52 -8.86 -1.61 -2.32 HI0262 -24.69 -13.38...” Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae Gladitz, Nucleic acids research 2005 “...DNA helicase (ruvB) HI0312 43 336 33.63 HFRD 0 64.1 RNA,tRNA modifying tRNA-guanine transglycosylase (tgt) HI0244 41 383 32 HFRD 0 42.85 rRNAmethylase-putative HI0766 39 161 40.92 HFRD 0 51.13 Pseudouridylate synthase I (truA) HI1644 41 270 35.53 HFRD 0 70.83 Translation Polypeptide deformylase (def) HI0622...” Initial proteome analysis of model microorganism Haemophilus influenzae strain Rd KW20 Kolker, Journal of bacteriology 2003 “...and rRNA-modifying enzymes, only tRNA-guanine transglycosylase (HI0244) was detected with high confidence. DNA replication, repair, and transcription. Although...” NGFG_00439 tRNA guanosine(34) transglycosylase Tgt from Neisseria gonorrhoeae MS11 22% identity, 18% coverage&def2=NGFG_00439&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_003687675.1)

Transcriptional landscape and essential genes of Neisseria gonorrhoeae Remmele, Nucleic acids research 2014 “...the third cluster of 5 genes includes ComEA proteins and a loosely linked queuine tRNA-ribosyltransferase (NGFG_00439). The remaining network clusters into small components of promoter pairs and triplets. Identification of essential genes To define the core of essential genes in GC we established a genome-wide random...” NGO0294 putative queuine tRNA-ribosyltransferase (NCBI) from Neisseria gonorrhoeae FA 1090 29% identity, 11% coverage&def2=NGO0294&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=VIMSS818516)

Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance Ezewudo, PeerJ 2015 “...NGO1847 Hypothetical protein 5 NGO1948 ComA 5 NGO0276 Chaperone protein HscA 5 NGO0829 tRNA-ribosyltransferase 5 NGO0294 RNA polymerase Subunit 5 NGO1850 ArsR family transcriptional regulator 5 NGO1562 Hypothetical protein 5 NGO0165 PriB 5 NGO0582 ABC transporter subunit 3 NGO2088 Hypothetical protein 3 NGO1984 tRNA pseudouridine synthase...” TGT_RAT / Q4QR99 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Rattus norvegicus (Rat) (see paper) NP_071586 queuine tRNA-ribosyltransferase catalytic subunit 1 from Rattus norvegicus 22% identity, 39% coverage&def2=TGT_RAT%20/%20Q4QR99&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_071586.2)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product. catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting the conservation of aspartates 89, 143 and 264;...” TGT_MOUSE / Q9JMA2 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Mus musculus (Mouse) (see 2 papers) NP_068688 queuine tRNA-ribosyltransferase catalytic subunit 1 from Mus musculus 31% identity, 12% coverage&def2=TGT_MOUSE%20/%20Q9JMA2&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_068688.2)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:19414587, PubMed:29862811). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product (By similarity). catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package (Accelrys). Selected regions highlighting the conservation of aspartates...” 6h42A / Q9BXR0 Crystal structure of the human tgt catalytic subunit qtrt1 (see paper) 22% identity, 36% coverage&def2=6h42A%20/%20Q9BXR0&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::6h42A)

Ligand: zinc ion (6h42A) 6h62A / Q9JMA2 Qtrt1, the catalytic subunit of murine tRNA-guanine transglycosylase (see paper) 29% identity, 14% coverage&def2=6h62A%20/%20Q9JMA2&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::6h62A)

Ligand: zinc ion (6h62A) 7b2iC / Q9JMA2 Heterodimeric tRNA-guanine transglycosylase from mouse (see paper) 29% identity, 14% coverage&def2=7b2iC%20/%20Q9JMA2&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=biolip::7b2iC)

Ligand: zinc ion (7b2iC) NP_502268 Queuine tRNA-ribosyltransferase catalytic subunit from Caenorhabditis elegans 29% identity, 11% coverage&def2=NP_502268&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=NP_502268.2)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases Chen, Nucleic acids research 2011 “...Haloferax volcanii , BAB40327; Archeoglobus. fulgidus , NP_070314; Pyrococcus horikoshii , NP_143020; Caenorhabditis elegans , NP_502268; Drosophila melanogaster , NP_608585; Mus musculus , NP_068688; Rattus norvegicus , NP_071586; Homosapien , AAG60033). Sequence alignment was performed using the PileUP alignment program found in the SeqWeb software package...” TGT_HUMAN / Q9BXR0 Queuine tRNA-ribosyltransferase catalytic subunit 1; Guanine insertion enzyme; tRNA-guanine transglycosylase; EC 2.4.2.64 from Homo sapiens (Human) (see 3 papers) Q9BXR0 tRNA-guanosine34 transglycosylase (EC 2.4.2.29) from Homo sapiens (see 2 papers) QTRT1 / Q9BXR0 queuine tRNA-ribosyltransferase catalytic subunit (EC 2.4.2.64) from Homo sapiens (see paper) NP_112486 queuine tRNA-ribosyltransferase catalytic subunit 1 from Homo sapiens 22% identity, 36% coverage&def2=TGT_HUMAN%20/%20Q9BXR0&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q9BXR0)

function: Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2- cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:11255023, PubMed:20354154). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product (By similarity). catalytic activity: guanosine(34) in tRNA + queuine = guanine + queuosine(34) in tRNA (RHEA:16633) cofactor: Zn(2+) subunit: Heterodimer of a catalytic subunit QTRT1 and an accessory subunit QTRT2. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. Biela, PloS one 2013 “...template to create a model of the human Tgt catalytic subunit (UniProtKB/Swiss-Prot [44] accession code Q9BXR0). Using ClustalW 1.83 [45] the corresponding sequences aligned with 42% identity. Based on the alignment, ten homology models for human Tgt were calculated with MODELLER 6a [46] . As no...” The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Fergus, Nucleic acids research 2021 GeneRIF: The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. Biela, PloS one 2013 GeneRIF: Homology models of C elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Chen, Nucleic acids research 2011 GeneRIF: phylogenetic and kinetic analyses support the conclusion that all tRNA-guanine transglycosylases have divergently evolved to specifically recognize their cognate heterocyclic substrates. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Eric, Biochemical and biophysical research communications 2011 GeneRIF: the inhibition of the human TGT by biopterin, consistent with earlier reports on other eukaryal TGTs, and supportive of the concept that pteridines may regulate eukaryal TGT activity in vivo. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. Chen, RNA (New York, N.Y.) 2010 GeneRIF: TGT is composed of a catalytic subunit, QTRT1, and QTRTD1, not USP14. QTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. Q23623 Queuine tRNA-ribosyltransferase catalytic subunit from Caenorhabditis elegans 29% identity, 11% coverage&def2=Q23623&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=Q23623)

Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens Yuan, Proceedings of the National Academy of Sciences of the United States of America 2019 (secret) RS_RS13575 tRNA guanosine(34) transglycosylase Tgt from Ralstonia nicotianae GMI1000 32% identity, 10% coverage&def2=RS_RS13575&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=WP_011002620.1)

A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians Morinière, mSystems 2022 “...chain Psyr_0033 RS_RS09955 ATU_RS00095 XHV734_1808 purK N5-carboxyaminoimidazole ribonucleotide synthase ATU_RS17455 Dda3937_01683 XHV734_1945 tgt tRNA-guanine transglycosylase RS_RS13575 XHV734_1977 gdh NAD-specific glutamate dehydrogenase ATU_RS13460 XHV734_2148 purM Phosphoribosylaminoimidazole synthetase ATU_RS05630 Dda3937_02515 XHV734_2154 sodA Superoxide dismutase, Mn ATU_RS04315 XHV734_2180 Dihydroorotase ATU_RS06435 XHV734_2250 UDP- N -acetylmuramyl pentapeptide phosphotransferase/UDP- N -acetylglucosamine-1-phosphate transferase...” F1SDJ8 Glutaredoxin 3 from Sus scrofa 30% identity, 11% coverage&def2=F1SDJ8&seq1=MAISSLSSPSGARVSSVTVKNKVLKTPCFFLPTSRGTVPHLTPDNVEEFDIPALYVGLEDCLDRLEASPILTNEGTIKKWIAAPSVQPTLLAPRRTSPLPSVSAGQSHINIVTASGAKKLTNDLYIKAVLKLCPELVIPLNDTPTSPPGVKRKPKIVERSVNWTTELLLALKATDAFNTTKVFFPVPDLDTQYLTPIFQFFQENQLANNIAGLAFSNNVNPLPADLVGLPRLSIQKFESPLEILKCIQRGIDIIVPDMITQATDAGVALTFSFPPPSKDVLNSKIELGLDMWDERFATDMEPLQSGCVCKTCRRYKRAYVRHLLQARELVAWILLQLHNVYAFTAFFQGIRASIQEGNFDEDVRKFEEIYMTSFPASHGFGPRKRGYQMDLTNVQPVENKPAWISMKSPLEKEIANEYEALKVTERKEDTQDYNEPELHNSNDPTVDLYADTYATQAATESDSELEDALFSQLDEFDDTAYREQRLEMLKKEFARVEAAKEKGHMQFLTVENEREVMDFTLSSKKVVIHFYHPDFIRCKIIDSHLEKIAKVHWETKFIRIEAANAPFLVVKLGLKVLPAVLCYVNSQLVDKIIGFADLGNKDDFETSLLEFRLLKSSAIDRLKEESSSNKSIYHDELQNNQSDDSDFFE&acc2=F1SDJ8)

iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes. Zhang, Journal of Zhejiang University. Science. B 2015