Closed barby1138 closed 5 years ago
Hi,
The loss keeps raising up? Loss2 and loss3 are regularisation term so sometimes raise up. And y-axis in my result are very large scale. It has same behavior.
Please keep on training about 100k iterations and check the generated results.
Thanks for reply, seems it stabilized. Also while generating from 60k model I still here noices - is it OK?
How about loss1? If loss1 is lower than about 2.2(8bit=256 quantize), the model generates audible results in my experience.
loss1 seems OK
some params of interest batchsize = 4 lr = 2e-4 dataset_type = 'VCTK' sr = 16000 quantize = 256 length = 7680
It seems wrong. Loss1 is too small. Please tell me
pip3 list
it's last source Latest commit 77be4eb on Aug 22 from audio branch
pip list Package Version
absl-py 0.2.2
alabaster 0.7.10
anaconda-client 1.6.14
anaconda-navigator 1.8.2
anaconda-project 0.8.0
asn1crypto 0.22.0
astor 0.6.2
astroid 1.5.3
astropy 2.0.2
audioread 2.1.5
Babel 2.5.0
backports-abc 0.5
backports.functools-lru-cache 1.4
backports.shutil-get-terminal-size 1.0.0
backports.ssl-match-hostname 3.5.0.1
backports.weakref 1.0.post1
beautifulsoup4 4.6.0
bitarray 0.8.1
bkcharts 0.2
blaze 0.11.3
bleach 1.5.0
bokeh 0.12.10
boto 2.48.0
boto3 1.7.4
botocore 1.10.4
Bottleneck 1.2.1
bz2file 0.98
cdecimal 2.3
certifi 2018.1.18
cffi 1.10.0
chainer 5.0.0rc1
chardet 3.0.4
click 6.7
cloudpickle 0.4.0
clyent 1.2.2
colorama 0.3.9
conda 4.4.6
conda-build 3.0.27
conda-verify 2.0.0
configparser 3.5.0
contextlib2 0.5.5
cryptography 2.0.3
cupy-cuda90 5.0.0rc1
cycler 0.10.0
Cython 0.26.1
cytoolz 0.8.2
dask 0.15.3
datashape 0.5.4
decorator 4.1.2
deepspeech-gpu 0.1.1
distributed 1.19.1
dm-sonnet 1.14
docutils 0.14
entrypoints 0.2.3
enum34 1.1.6
et-xmlfile 1.0.1
fastcache 1.0.2
fastrlock 0.3
filelock 2.0.12
fire 0.1.3
Flask 0.12.2
Flask-Cors 3.0.3
funcsigs 1.0.2
functools32 3.2.3.post2
future 0.16.0
futures 3.2.0
gast 0.2.0
gensim 3.4.0
gevent 1.2.2
glob2 0.5
gmpy2 2.0.8
greenlet 0.4.12
grin 1.2.1
grpcio 1.11.0
h5py 2.7.0
heapdict 1.0.0
html5lib 0.9999999
idna 2.6
imageio 2.2.0
imagesize 0.7.1
intervaltree 2.1.0
ipaddress 1.0.18
ipykernel 4.6.1
ipython 5.4.1
ipython-genutils 0.2.0
ipywidgets 7.0.0
isort 4.2.15
itsdangerous 0.24
jdcal 1.3
jedi 0.10.2
Jinja2 2.9.6
jmespath 0.9.3
joblib 0.11
jsonschema 2.6.0
jupyter-client 5.1.0
jupyter-console 5.2.0
jupyter-core 4.3.0
jupyterlab 0.27.0
jupyterlab-launcher 0.4.0
lazy-object-proxy 1.3.1
librosa 0.5.1
llvmlite 0.20.0
locket 0.2.0
lxml 4.1.0
magenta-gpu 0.3.5
Markdown 2.6.11
MarkupSafe 1.0
matplotlib 2.1.0
mccabe 0.6.1
mido 1.2.6
mir-eval 0.4
mistune 0.7.4
mock 2.0.0
mpmath 0.19
msgpack-python 0.4.8
multipledispatch 0.4.9
navigator-updater 0.1.0
nbconvert 5.3.1
nbformat 4.4.0
networkx 2.0
nltk 3.2.4
nose 1.3.7
notebook 5.0.0
numba 0.35.0+10.g143f70e90.dirty
numexpr 2.6.2
numpy 1.14.5
numpydoc 0.7.0
odo 0.5.1
olefile 0.44
openpyxl 2.4.8
packaging 16.8
pandas 0.20.3
pandocfilters 1.4.2
partd 0.3.8
path.py 10.3.1
pathlib 1.0.1
pathlib2 2.3.0
patsy 0.4.1
pbr 4.0.4
pep8 1.7.0
pexpect 4.2.1
pickleshare 0.7.4
Pillow 4.2.1
pip 18.0
pkginfo 1.4.1
ply 3.10
pretty-midi 0.2.8
progressbar 2.5
prompt-toolkit 1.0.15
protobuf 3.6.0
psutil 5.4.0
ptyprocess 0.5.2
py 1.4.34
pyarrow 0.9.0
pycairo 1.13.3
pycodestyle 2.3.1
pycosat 0.6.3
pycparser 2.18
pycrypto 2.6.1
pycurl 7.43.0
pydub 0.22.1
pyflakes 1.6.0
Pygments 2.2.0
pylint 1.7.4
pyodbc 4.0.17
pyOpenSSL 17.2.0
pyparsing 2.2.0
PySocks 1.6.7
pytest 3.2.1
python-dateutil 2.6.1
python-rtmidi 1.1.0
pytz 2017.2
PyWavelets 0.5.2
pyworld 0.2.5
PyYAML 3.12
pyzmq 16.0.2
QtAwesome 0.4.4
qtconsole 4.3.1
QtPy 1.3.1
requests 2.18.4
resampy 0.2.0
rope 0.10.5
ruamel-yaml 0.11.14
s3transfer 0.1.13
scandir 1.6
scikit-image 0.13.0
scikit-learn 0.19.1
scipy 0.19.1
seaborn 0.8
setuptools 40.4.3
simplegeneric 0.8.1
singledispatch 3.4.0.3
six 1.11.0
smart-open 1.5.7
snowballstemmer 1.2.1
sortedcollections 0.5.3
sortedcontainers 1.5.7
SoundFile 0.10.2
Sphinx 1.6.3
sphinxcontrib-websupport 1.0.1
spyder 3.2.4
SQLAlchemy 1.1.13
statsmodels 0.8.0
subprocess32 3.2.7
svgwrite 1.1.6
sympy 1.1.1
tables 3.4.2
tabulate 0.8.2
tb-nightly 1.5.0a20180106
tblib 1.3.2
tensorboard 1.8.0
tensorflow-gpu 1.8.0
tensorflow-hub 0.1.0
tensorpack 0.8.6
termcolor 1.1.0
terminado 0.6
testpath 0.3.1
tf 1.0.0
tf-nightly 1.6.0.dev20180105
toolz 0.8.2
torch 0.4.1
tornado 4.5.2
tqdm 4.23.4
traitlets 4.3.2
typing 3.6.2
unicodecsv 0.14.1
urllib3 1.22
wcwidth 0.1.7
webencodings 0.5.1
Werkzeug 0.14.1
wheel 0.31.1
widgetsnbextension 3.0.2
wrapt 1.10.11
xlrd 1.1.0
XlsxWriter 1.0.2
xlwt 1.3.0
zict 0.1.3
params:
batchsize = 4 lr = 2e-4 ema_mu = 0.9999 trigger = (250000, 'iteration') evaluate_interval = (1, 'epoch') snapshot_interval = (10000, 'iteration') report_interval = (100, 'iteration')
root = '../VCTK-Corpus' dataset_type = 'VCTK' split_seed = 71
sr = 16000 res_type = 'kaiser_fast' top_db = 20 input_dim = 256 quantize = 256 length = 7680 use_logistic = False
d = 512 k = 512
n_loop = 3 n_layer = 10 filter_size = 2
residual_channels = 512 dilated_channels = 512 skip_channels = 256
n_mixture = 10 * 3 log_scale_min = -40 global_condition_dim = 128 local_condition_dim = 512 dropout_zero_rate = 0
beta = 0.25
use_ema = True apply_dropout = False
BTW I use python2 is it critical?
Ummm... Strange... I checked working with python3.5.2 and chainer4.0.0b3. And I don't know whether my code works in other environment. So can you try with same environment at first? FYI: I use docker to set up environment.
8bit(256) quantized WaveNet's loss(it is loss1 in this repo.) is about 4\~5 in very beginning of the training and goes down to 2\~2.5. It's wrong if the loss is such small value.
# I edited to fix markdown syntax error
And if you modify files other than params.py
, please tell me.
He I ve restarted with python 3.6 and seems loss1 is OK now ~5
It's good!
FYI: If your GPU usage is low, please set -p
and -f
option like python3 train.py -g 0 -f 64 -p 2
. Details are in my README.
thanks for help
Hi. What is the y-axis range of loss2 and loss3?
@partha2409 The y-axis range is defined automatically by Chainer. And loss2 and loss3 are very large in early phase. So that the y-axis is so large range.
Hi @dhgrs , i am implementing vq vae in pytorch using your implementation as reference. For me the reconstruction loss looks fine . But loss2 and loss3 are very close to zero right from the initial iterations. It is similar to the graphs attached by @barby1138. But i notice in your graphs loss2 starts well around 48. is it fine or do you think i am making mistakes with loss2 and loss3?
Hi @partha2409, thanks for your interest!
I think you have not made a mistake. Loss2 and loss3 are regularisation terms, so the values are very unstable in initial iterations.
Hi, I try to play with vq-vae and i see its loss raises. Can you suggest anything? I do not observe such behaviour at your diagrams