Closed menkotoglou closed 1 year ago
Rerun it and got the following :ok: result:
(.venv) 🚀 ~/p/a/p/data on update-library-to-1dot3dot1 ◦ (.venv) python train_model.py
Training model
Could not find clean_data.csv, will try to extract.
Decompress clean_data.csv
Listing compressed file contents:
7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_GB.UTF-8,Utf16=on,HugeFiles=on,64 bits,16 CPUs AMD Ryzen 7 1700 Eight-Core Processor (800F11),ASM,AES-NI)
Scanning the drive for archives:
1 file, 17720371 bytes (17 MiB)
Listing archive: clean_data.csv.7z
--
Path = clean_data.csv.7z
Type = 7z
Physical Size = 17720371
Headers Size = 138
Method = LZMA2:24
Solid = -
Blocks = 1
Date Time Attr Size Compressed Name
------------------- ----- ------------ ------------ ------------------------
2023-06-23 18:46:54 ....A 66714639 17720233 clean_data.csv
------------------- ----- ------------ ------------ ------------------------
2023-06-23 18:46:54 66714639 17720233 1 files
Extract clean_data.csv from clean_data.csv.7z:
7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_GB.UTF-8,Utf16=on,HugeFiles=on,64 bits,16 CPUs AMD Ryzen 7 1700 Eight-Core Processor (800F11),ASM,AES-NI)
Scanning the drive for archives:
1 file, 17720371 bytes (17 MiB)
Extracting archive: clean_data.csv.7z
--
Path = clean_data.csv.7z
Type = 7z
Physical Size = 17720371
Headers Size = 138
Method = LZMA2:24
Solid = -
Blocks = 1
Everything is Ok
Size: 66714639
Compressed: 17720371
ff90058eaf3ae484e4e9ec7b979bbc4d271dac15098399cca50de27b29d6f5a8ddad4cfdcb021185a737e673126432ae8f3c181050e496daac42c7c904a3ef7e
SHA256 hash of clean_data.csv: ff90058eaf3ae484e4e9ec7b979bbc4d271dac15098399cca50de27b29d6f5a8ddad4cfdcb021185a737e673126432ae8f3c181050e496daac42c7c904a3ef7e
Stored hash to check against: ff90058eaf3ae484e4e9ec7b979bbc4d271dac15098399cca50de27b29d6f5a8ddad4cfdcb021185a737e673126432ae8f3c181050e496daac42c7c904a3ef7e
No idea why it failed in your setup
@menkotoglou For 3.8: ERROR: No matching distribution found for numpy==1.26.0
. Is it possible that we might downgrade for Python 3.8 or is it no more supported from scikit?
From https://pypi.org/project/scikit-learn/
scikit-learn requires: Python (>= 3.8)
Maybe manage version of numpy is a good solution.
Ran the training script and received the following
Found another alternative online for the
sha256sum
and got me to thisThere's something wrong on our side and we need to identify what.