dingmyu / D4LCN

A pytorch implementation of "D4LCN: Learning Depth-Guided Convolutions for Monocular 3D Object Detection" CVPR 2020
MIT License
313 stars 57 forks source link

Replicate results from the paper #37

Open vobecant opened 3 years ago

vobecant commented 3 years ago

Dear authors,

thank you very much for your work. I would like to ask you a few questions.

First, when I evaluate your provided network, I get the following results:

OLD_test_iter pretrain 2d car --> easy: 0.9277, mod: 0.8439, hard: 0.6785
NEW_test_iter pretrain 2d car --> easy: 0.9342, mod: 0.8377, hard: 0.6742
OLD_test_iter pretrain gr car --> easy: 0.3349, mod: 0.2507, hard: 0.1983
NEW_test_iter pretrain gr car --> easy: 0.3225, mod: 0.2268, hard: 0.1722
OLD_test_iter pretrain 3d car --> easy: 0.2490, mod: 0.2077, hard: 0.1729
NEW_test_iter pretrain 3d car --> easy: 0.2317, mod: 0.1621, hard: 0.1234
OLD_test_iter pretrain 2d pedestrian --> easy: 0.6618, mod: 0.5812, hard: 0.4975
NEW_test_iter pretrain 2d pedestrian --> easy: 0.6896, mod: 0.5670, hard: 0.4756
OLD_test_iter pretrain gr pedestrian --> easy: 0.0628, mod: 0.0512, hard: 0.0483
NEW_test_iter pretrain gr pedestrian --> easy: 0.0471, mod: 0.0391, hard: 0.0321
OLD_test_iter pretrain 3d pedestrian --> easy: 0.0436, mod: 0.0445, hard: 0.0396
NEW_test_iter pretrain 3d pedestrian --> easy: 0.0371, mod: 0.0293, hard: 0.0270
OLD_test_iter pretrain 2d cyclist --> easy: 0.6234, mod: 0.4608, hard: 0.3972
NEW_test_iter pretrain 2d cyclist --> easy: 0.6301, mod: 0.4180, hard: 0.3816
OLD_test_iter pretrain gr cyclist --> easy: 0.0344, mod: 0.0296, hard: 0.0306
NEW_test_iter pretrain gr cyclist --> easy: 0.0295, mod: 0.0168, hard: 0.0168
OLD_test_iter pretrain 3d cyclist --> easy: 0.0293, mod: 0.0270, hard: 0.0262
NEW_test_iter pretrain 3d cyclist --> easy: 0.0263, mod: 0.0149, hard: 0.0148

These are OK results for the car class but not for pedestrian and cyclist classes. Also, these results are not the same that you provide in your paper. I mean these results: image

Also, when I run train.sh, I get similar results to the results that I get using the provided model, but these results are still not the same as in the paper. In fact, it is significantly better for the pedestrian class and better for the cyclist class.

OLD_test_iter 40000 2d car --> easy: 0.8290, mod: 0.7506, hard: 0.5892
NEW_test_iter 40000 2d car --> easy: 0.8759, mod: 0.7708, hard: 0.6137
OLD_test_iter 40000 gr car --> easy: 0.3448, mod: 0.2528, hard: 0.2053
NEW_test_iter 40000 gr car --> easy: 0.3066, mod: 0.2115, hard: 0.1653
OLD_test_iter 40000 3d car --> easy: 0.2671, mod: 0.1953, hard: 0.1754
NEW_test_iter 40000 3d car --> easy: 0.2230, mod: 0.1503, hard: 0.1193
OLD_test_iter 40000 2d pedestrian --> easy: 0.5670, mod: 0.4883, hard: 0.4096
NEW_test_iter 40000 2d pedestrian --> easy: 0.5822, mod: 0.4813, hard: 0.3946
OLD_test_iter 40000 gr pedestrian --> easy: 0.1323, mod: 0.1156, hard: 0.1137
NEW_test_iter 40000 gr pedestrian --> easy: 0.0528, mod: 0.0424, hard: 0.0351
OLD_test_iter 40000 3d pedestrian --> easy: 0.0473, mod: 0.0482, hard: 0.0413
NEW_test_iter 40000 3d pedestrian --> easy: 0.0405, mod: 0.0314, hard: 0.0287
OLD_test_iter 40000 2d cyclist --> easy: 0.4861, mod: 0.3255, hard: 0.3241
NEW_test_iter 40000 2d cyclist --> easy: 0.4460, mod: 0.2657, hard: 0.2633
OLD_test_iter 40000 gr cyclist --> easy: 0.1132, mod: 0.1058, hard: 0.1064
NEW_test_iter 40000 gr cyclist --> easy: 0.0375, mod: 0.0242, hard: 0.0238
OLD_test_iter 40000 3d cyclist --> easy: 0.1070, mod: 0.0909, hard: 0.0909
NEW_test_iter 40000 3d cyclist --> easy: 0.0213, mod: 0.0141, hard: 0.0144

Can you please tell me how can I obtain the same results as in the paper? Thank you!

wangziniu1109 commented 3 years ago

Dear authors,

thank you very much for your work. I would like to ask you a few questions.

First, when I evaluate your provided network, I get the following results:

OLD_test_iter pretrain 2d car --> easy: 0.9277, mod: 0.8439, hard: 0.6785
NEW_test_iter pretrain 2d car --> easy: 0.9342, mod: 0.8377, hard: 0.6742
OLD_test_iter pretrain gr car --> easy: 0.3349, mod: 0.2507, hard: 0.1983
NEW_test_iter pretrain gr car --> easy: 0.3225, mod: 0.2268, hard: 0.1722
OLD_test_iter pretrain 3d car --> easy: 0.2490, mod: 0.2077, hard: 0.1729
NEW_test_iter pretrain 3d car --> easy: 0.2317, mod: 0.1621, hard: 0.1234
OLD_test_iter pretrain 2d pedestrian --> easy: 0.6618, mod: 0.5812, hard: 0.4975
NEW_test_iter pretrain 2d pedestrian --> easy: 0.6896, mod: 0.5670, hard: 0.4756
OLD_test_iter pretrain gr pedestrian --> easy: 0.0628, mod: 0.0512, hard: 0.0483
NEW_test_iter pretrain gr pedestrian --> easy: 0.0471, mod: 0.0391, hard: 0.0321
OLD_test_iter pretrain 3d pedestrian --> easy: 0.0436, mod: 0.0445, hard: 0.0396
NEW_test_iter pretrain 3d pedestrian --> easy: 0.0371, mod: 0.0293, hard: 0.0270
OLD_test_iter pretrain 2d cyclist --> easy: 0.6234, mod: 0.4608, hard: 0.3972
NEW_test_iter pretrain 2d cyclist --> easy: 0.6301, mod: 0.4180, hard: 0.3816
OLD_test_iter pretrain gr cyclist --> easy: 0.0344, mod: 0.0296, hard: 0.0306
NEW_test_iter pretrain gr cyclist --> easy: 0.0295, mod: 0.0168, hard: 0.0168
OLD_test_iter pretrain 3d cyclist --> easy: 0.0293, mod: 0.0270, hard: 0.0262
NEW_test_iter pretrain 3d cyclist --> easy: 0.0263, mod: 0.0149, hard: 0.0148

These are OK results for the car class but not for pedestrian and cyclist classes. Also, these results are not the same that you provide in your paper. I mean these results: image

Also, when I run train.sh, I get similar results to the results that I get using the provided model, but these results are still not the same as in the paper. In fact, it is significantly better for the pedestrian class and better for the cyclist class.

OLD_test_iter 40000 2d car --> easy: 0.8290, mod: 0.7506, hard: 0.5892
NEW_test_iter 40000 2d car --> easy: 0.8759, mod: 0.7708, hard: 0.6137
OLD_test_iter 40000 gr car --> easy: 0.3448, mod: 0.2528, hard: 0.2053
NEW_test_iter 40000 gr car --> easy: 0.3066, mod: 0.2115, hard: 0.1653
OLD_test_iter 40000 3d car --> easy: 0.2671, mod: 0.1953, hard: 0.1754
NEW_test_iter 40000 3d car --> easy: 0.2230, mod: 0.1503, hard: 0.1193
OLD_test_iter 40000 2d pedestrian --> easy: 0.5670, mod: 0.4883, hard: 0.4096
NEW_test_iter 40000 2d pedestrian --> easy: 0.5822, mod: 0.4813, hard: 0.3946
OLD_test_iter 40000 gr pedestrian --> easy: 0.1323, mod: 0.1156, hard: 0.1137
NEW_test_iter 40000 gr pedestrian --> easy: 0.0528, mod: 0.0424, hard: 0.0351
OLD_test_iter 40000 3d pedestrian --> easy: 0.0473, mod: 0.0482, hard: 0.0413
NEW_test_iter 40000 3d pedestrian --> easy: 0.0405, mod: 0.0314, hard: 0.0287
OLD_test_iter 40000 2d cyclist --> easy: 0.4861, mod: 0.3255, hard: 0.3241
NEW_test_iter 40000 2d cyclist --> easy: 0.4460, mod: 0.2657, hard: 0.2633
OLD_test_iter 40000 gr cyclist --> easy: 0.1132, mod: 0.1058, hard: 0.1064
NEW_test_iter 40000 gr cyclist --> easy: 0.0375, mod: 0.0242, hard: 0.0238
OLD_test_iter 40000 3d cyclist --> easy: 0.1070, mod: 0.0909, hard: 0.0909
NEW_test_iter 40000 3d cyclist --> easy: 0.0213, mod: 0.0141, hard: 0.0144

Can you please tell me how can I obtain the same results as in the paper? Thank you!

the same question,thank you

wangziniu1109 commented 3 years ago

Dear authors,

thank you very much for your work. I would like to ask you a few questions.

First, when I evaluate your provided network, I get the following results:

OLD_test_iter pretrain 2d car --> easy: 0.9277, mod: 0.8439, hard: 0.6785
NEW_test_iter pretrain 2d car --> easy: 0.9342, mod: 0.8377, hard: 0.6742
OLD_test_iter pretrain gr car --> easy: 0.3349, mod: 0.2507, hard: 0.1983
NEW_test_iter pretrain gr car --> easy: 0.3225, mod: 0.2268, hard: 0.1722
OLD_test_iter pretrain 3d car --> easy: 0.2490, mod: 0.2077, hard: 0.1729
NEW_test_iter pretrain 3d car --> easy: 0.2317, mod: 0.1621, hard: 0.1234
OLD_test_iter pretrain 2d pedestrian --> easy: 0.6618, mod: 0.5812, hard: 0.4975
NEW_test_iter pretrain 2d pedestrian --> easy: 0.6896, mod: 0.5670, hard: 0.4756
OLD_test_iter pretrain gr pedestrian --> easy: 0.0628, mod: 0.0512, hard: 0.0483
NEW_test_iter pretrain gr pedestrian --> easy: 0.0471, mod: 0.0391, hard: 0.0321
OLD_test_iter pretrain 3d pedestrian --> easy: 0.0436, mod: 0.0445, hard: 0.0396
NEW_test_iter pretrain 3d pedestrian --> easy: 0.0371, mod: 0.0293, hard: 0.0270
OLD_test_iter pretrain 2d cyclist --> easy: 0.6234, mod: 0.4608, hard: 0.3972
NEW_test_iter pretrain 2d cyclist --> easy: 0.6301, mod: 0.4180, hard: 0.3816
OLD_test_iter pretrain gr cyclist --> easy: 0.0344, mod: 0.0296, hard: 0.0306
NEW_test_iter pretrain gr cyclist --> easy: 0.0295, mod: 0.0168, hard: 0.0168
OLD_test_iter pretrain 3d cyclist --> easy: 0.0293, mod: 0.0270, hard: 0.0262
NEW_test_iter pretrain 3d cyclist --> easy: 0.0263, mod: 0.0149, hard: 0.0148

These are OK results for the car class but not for pedestrian and cyclist classes. Also, these results are not the same that you provide in your paper. I mean these results: image

Also, when I run train.sh, I get similar results to the results that I get using the provided model, but these results are still not the same as in the paper. In fact, it is significantly better for the pedestrian class and better for the cyclist class.

OLD_test_iter 40000 2d car --> easy: 0.8290, mod: 0.7506, hard: 0.5892
NEW_test_iter 40000 2d car --> easy: 0.8759, mod: 0.7708, hard: 0.6137
OLD_test_iter 40000 gr car --> easy: 0.3448, mod: 0.2528, hard: 0.2053
NEW_test_iter 40000 gr car --> easy: 0.3066, mod: 0.2115, hard: 0.1653
OLD_test_iter 40000 3d car --> easy: 0.2671, mod: 0.1953, hard: 0.1754
NEW_test_iter 40000 3d car --> easy: 0.2230, mod: 0.1503, hard: 0.1193
OLD_test_iter 40000 2d pedestrian --> easy: 0.5670, mod: 0.4883, hard: 0.4096
NEW_test_iter 40000 2d pedestrian --> easy: 0.5822, mod: 0.4813, hard: 0.3946
OLD_test_iter 40000 gr pedestrian --> easy: 0.1323, mod: 0.1156, hard: 0.1137
NEW_test_iter 40000 gr pedestrian --> easy: 0.0528, mod: 0.0424, hard: 0.0351
OLD_test_iter 40000 3d pedestrian --> easy: 0.0473, mod: 0.0482, hard: 0.0413
NEW_test_iter 40000 3d pedestrian --> easy: 0.0405, mod: 0.0314, hard: 0.0287
OLD_test_iter 40000 2d cyclist --> easy: 0.4861, mod: 0.3255, hard: 0.3241
NEW_test_iter 40000 2d cyclist --> easy: 0.4460, mod: 0.2657, hard: 0.2633
OLD_test_iter 40000 gr cyclist --> easy: 0.1132, mod: 0.1058, hard: 0.1064
NEW_test_iter 40000 gr cyclist --> easy: 0.0375, mod: 0.0242, hard: 0.0238
OLD_test_iter 40000 3d cyclist --> easy: 0.1070, mod: 0.0909, hard: 0.0909
NEW_test_iter 40000 3d cyclist --> easy: 0.0213, mod: 0.0141, hard: 0.0144

Can you please tell me how can I obtain the same results as in the paper? Thank you! OLD_test_iter 40000 2d car --> easy: 0.8559, mod: 0.7633, hard: 0.6673 NEW_test_iter 40000 2d car --> easy: 0.9023, mod: 0.7834, hard: 0.6453 OLD_test_iter 40000 gr car --> easy: 0.1754, mod: 0.1422, hard: 0.1190 NEW_test_iter 40000 gr car --> easy: 0.1770, mod: 0.1230, hard: 0.1005 OLD_test_iter 40000 3d car --> easy: 0.1317, mod: 0.0964, hard: 0.0698 NEW_test_iter 40000 3d car --> easy: 0.1184, mod: 0.0762, hard: 0.0596 OLD_test_iter 40000 2d pedestrian --> easy: 0.5614, mod: 0.4844, hard: 0.4063 NEW_test_iter 40000 2d pedestrian --> easy: 0.5609, mod: 0.4403, hard: 0.3724 OLD_test_iter 40000 gr pedestrian --> easy: 0.1065, mod: 0.1057, hard: 0.1051 NEW_test_iter 40000 gr pedestrian --> easy: 0.0278, mod: 0.0242, hard: 0.0194 OLD_test_iter 40000 3d pedestrian --> easy: 0.1027, mod: 0.1024, hard: 0.0909 NEW_test_iter 40000 3d pedestrian --> easy: 0.0193, mod: 0.0167, hard: 0.0125 OLD_test_iter 40000 2d cyclist --> easy: 0.0612, mod: 0.0686, hard: 0.0715 NEW_test_iter 40000 2d cyclist --> easy: 0.0505, mod: 0.0377, hard: 0.0393 OLD_test_iter 40000 gr cyclist --> easy: 0.0048, mod: 0.0048, hard: 0.0048 NEW_test_iter 40000 gr cyclist --> easy: 0.0013, mod: 0.0013, hard: 0.0013 OLD_test_iter 40000 3d cyclist --> easy: 0.0043, mod: 0.0043, hard: 0.0043 NEW_test_iter 40000 3d cyclist --> easy: 0.0008, mod: 0.0008, hard: 0.0008 sorry,i got the results like this when i run train.sh,could you please tell me how i can get the results like yours

vobecant commented 3 years ago

Dear authors, thank you very much for your work. I would like to ask you a few questions. First, when I evaluate your provided network, I get the following results:

OLD_test_iter pretrain 2d car --> easy: 0.9277, mod: 0.8439, hard: 0.6785
NEW_test_iter pretrain 2d car --> easy: 0.9342, mod: 0.8377, hard: 0.6742
OLD_test_iter pretrain gr car --> easy: 0.3349, mod: 0.2507, hard: 0.1983
NEW_test_iter pretrain gr car --> easy: 0.3225, mod: 0.2268, hard: 0.1722
OLD_test_iter pretrain 3d car --> easy: 0.2490, mod: 0.2077, hard: 0.1729
NEW_test_iter pretrain 3d car --> easy: 0.2317, mod: 0.1621, hard: 0.1234
OLD_test_iter pretrain 2d pedestrian --> easy: 0.6618, mod: 0.5812, hard: 0.4975
NEW_test_iter pretrain 2d pedestrian --> easy: 0.6896, mod: 0.5670, hard: 0.4756
OLD_test_iter pretrain gr pedestrian --> easy: 0.0628, mod: 0.0512, hard: 0.0483
NEW_test_iter pretrain gr pedestrian --> easy: 0.0471, mod: 0.0391, hard: 0.0321
OLD_test_iter pretrain 3d pedestrian --> easy: 0.0436, mod: 0.0445, hard: 0.0396
NEW_test_iter pretrain 3d pedestrian --> easy: 0.0371, mod: 0.0293, hard: 0.0270
OLD_test_iter pretrain 2d cyclist --> easy: 0.6234, mod: 0.4608, hard: 0.3972
NEW_test_iter pretrain 2d cyclist --> easy: 0.6301, mod: 0.4180, hard: 0.3816
OLD_test_iter pretrain gr cyclist --> easy: 0.0344, mod: 0.0296, hard: 0.0306
NEW_test_iter pretrain gr cyclist --> easy: 0.0295, mod: 0.0168, hard: 0.0168
OLD_test_iter pretrain 3d cyclist --> easy: 0.0293, mod: 0.0270, hard: 0.0262
NEW_test_iter pretrain 3d cyclist --> easy: 0.0263, mod: 0.0149, hard: 0.0148

These are OK results for the car class but not for pedestrian and cyclist classes. Also, these results are not the same that you provide in your paper. I mean these results: image Also, when I run train.sh, I get similar results to the results that I get using the provided model, but these results are still not the same as in the paper. In fact, it is significantly better for the pedestrian class and better for the cyclist class.

OLD_test_iter 40000 2d car --> easy: 0.8290, mod: 0.7506, hard: 0.5892
NEW_test_iter 40000 2d car --> easy: 0.8759, mod: 0.7708, hard: 0.6137
OLD_test_iter 40000 gr car --> easy: 0.3448, mod: 0.2528, hard: 0.2053
NEW_test_iter 40000 gr car --> easy: 0.3066, mod: 0.2115, hard: 0.1653
OLD_test_iter 40000 3d car --> easy: 0.2671, mod: 0.1953, hard: 0.1754
NEW_test_iter 40000 3d car --> easy: 0.2230, mod: 0.1503, hard: 0.1193
OLD_test_iter 40000 2d pedestrian --> easy: 0.5670, mod: 0.4883, hard: 0.4096
NEW_test_iter 40000 2d pedestrian --> easy: 0.5822, mod: 0.4813, hard: 0.3946
OLD_test_iter 40000 gr pedestrian --> easy: 0.1323, mod: 0.1156, hard: 0.1137
NEW_test_iter 40000 gr pedestrian --> easy: 0.0528, mod: 0.0424, hard: 0.0351
OLD_test_iter 40000 3d pedestrian --> easy: 0.0473, mod: 0.0482, hard: 0.0413
NEW_test_iter 40000 3d pedestrian --> easy: 0.0405, mod: 0.0314, hard: 0.0287
OLD_test_iter 40000 2d cyclist --> easy: 0.4861, mod: 0.3255, hard: 0.3241
NEW_test_iter 40000 2d cyclist --> easy: 0.4460, mod: 0.2657, hard: 0.2633
OLD_test_iter 40000 gr cyclist --> easy: 0.1132, mod: 0.1058, hard: 0.1064
NEW_test_iter 40000 gr cyclist --> easy: 0.0375, mod: 0.0242, hard: 0.0238
OLD_test_iter 40000 3d cyclist --> easy: 0.1070, mod: 0.0909, hard: 0.0909
NEW_test_iter 40000 3d cyclist --> easy: 0.0213, mod: 0.0141, hard: 0.0144

Can you please tell me how can I obtain the same results as in the paper? Thank you! OLD_test_iter 40000 2d car --> easy: 0.8559, mod: 0.7633, hard: 0.6673 NEW_test_iter 40000 2d car --> easy: 0.9023, mod: 0.7834, hard: 0.6453 OLD_test_iter 40000 gr car --> easy: 0.1754, mod: 0.1422, hard: 0.1190 NEW_test_iter 40000 gr car --> easy: 0.1770, mod: 0.1230, hard: 0.1005 OLD_test_iter 40000 3d car --> easy: 0.1317, mod: 0.0964, hard: 0.0698 NEW_test_iter 40000 3d car --> easy: 0.1184, mod: 0.0762, hard: 0.0596 OLD_test_iter 40000 2d pedestrian --> easy: 0.5614, mod: 0.4844, hard: 0.4063 NEW_test_iter 40000 2d pedestrian --> easy: 0.5609, mod: 0.4403, hard: 0.3724 OLD_test_iter 40000 gr pedestrian --> easy: 0.1065, mod: 0.1057, hard: 0.1051 NEW_test_iter 40000 gr pedestrian --> easy: 0.0278, mod: 0.0242, hard: 0.0194 OLD_test_iter 40000 3d pedestrian --> easy: 0.1027, mod: 0.1024, hard: 0.0909 NEW_test_iter 40000 3d pedestrian --> easy: 0.0193, mod: 0.0167, hard: 0.0125 OLD_test_iter 40000 2d cyclist --> easy: 0.0612, mod: 0.0686, hard: 0.0715 NEW_test_iter 40000 2d cyclist --> easy: 0.0505, mod: 0.0377, hard: 0.0393 OLD_test_iter 40000 gr cyclist --> easy: 0.0048, mod: 0.0048, hard: 0.0048 NEW_test_iter 40000 gr cyclist --> easy: 0.0013, mod: 0.0013, hard: 0.0013 OLD_test_iter 40000 3d cyclist --> easy: 0.0043, mod: 0.0043, hard: 0.0043 NEW_test_iter 40000 3d cyclist --> easy: 0.0008, mod: 0.0008, hard: 0.0008 sorry,i got the results like this when i run train.sh,could you please tell me how i can get the results like yours

The difference in the results can be caused just by a different dynamics of the training and by a different initialization.

wangziniu1109 commented 3 years ago

Dear authors,

thank you very much for your work. I would like to ask you a few questions.

First, when I evaluate your provided network, I get the following results:

OLD_test_iter pretrain 2d car --> easy: 0.9277, mod: 0.8439, hard: 0.6785
NEW_test_iter pretrain 2d car --> easy: 0.9342, mod: 0.8377, hard: 0.6742
OLD_test_iter pretrain gr car --> easy: 0.3349, mod: 0.2507, hard: 0.1983
NEW_test_iter pretrain gr car --> easy: 0.3225, mod: 0.2268, hard: 0.1722
OLD_test_iter pretrain 3d car --> easy: 0.2490, mod: 0.2077, hard: 0.1729
NEW_test_iter pretrain 3d car --> easy: 0.2317, mod: 0.1621, hard: 0.1234
OLD_test_iter pretrain 2d pedestrian --> easy: 0.6618, mod: 0.5812, hard: 0.4975
NEW_test_iter pretrain 2d pedestrian --> easy: 0.6896, mod: 0.5670, hard: 0.4756
OLD_test_iter pretrain gr pedestrian --> easy: 0.0628, mod: 0.0512, hard: 0.0483
NEW_test_iter pretrain gr pedestrian --> easy: 0.0471, mod: 0.0391, hard: 0.0321
OLD_test_iter pretrain 3d pedestrian --> easy: 0.0436, mod: 0.0445, hard: 0.0396
NEW_test_iter pretrain 3d pedestrian --> easy: 0.0371, mod: 0.0293, hard: 0.0270
OLD_test_iter pretrain 2d cyclist --> easy: 0.6234, mod: 0.4608, hard: 0.3972
NEW_test_iter pretrain 2d cyclist --> easy: 0.6301, mod: 0.4180, hard: 0.3816
OLD_test_iter pretrain gr cyclist --> easy: 0.0344, mod: 0.0296, hard: 0.0306
NEW_test_iter pretrain gr cyclist --> easy: 0.0295, mod: 0.0168, hard: 0.0168
OLD_test_iter pretrain 3d cyclist --> easy: 0.0293, mod: 0.0270, hard: 0.0262
NEW_test_iter pretrain 3d cyclist --> easy: 0.0263, mod: 0.0149, hard: 0.0148

These are OK results for the car class but not for pedestrian and cyclist classes. Also, these results are not the same that you provide in your paper. I mean these results: image

Also, when I run train.sh, I get similar results to the results that I get using the provided model, but these results are still not the same as in the paper. In fact, it is significantly better for the pedestrian class and better for the cyclist class.

OLD_test_iter 40000 2d car --> easy: 0.8290, mod: 0.7506, hard: 0.5892
NEW_test_iter 40000 2d car --> easy: 0.8759, mod: 0.7708, hard: 0.6137
OLD_test_iter 40000 gr car --> easy: 0.3448, mod: 0.2528, hard: 0.2053
NEW_test_iter 40000 gr car --> easy: 0.3066, mod: 0.2115, hard: 0.1653
OLD_test_iter 40000 3d car --> easy: 0.2671, mod: 0.1953, hard: 0.1754
NEW_test_iter 40000 3d car --> easy: 0.2230, mod: 0.1503, hard: 0.1193
OLD_test_iter 40000 2d pedestrian --> easy: 0.5670, mod: 0.4883, hard: 0.4096
NEW_test_iter 40000 2d pedestrian --> easy: 0.5822, mod: 0.4813, hard: 0.3946
OLD_test_iter 40000 gr pedestrian --> easy: 0.1323, mod: 0.1156, hard: 0.1137
NEW_test_iter 40000 gr pedestrian --> easy: 0.0528, mod: 0.0424, hard: 0.0351
OLD_test_iter 40000 3d pedestrian --> easy: 0.0473, mod: 0.0482, hard: 0.0413
NEW_test_iter 40000 3d pedestrian --> easy: 0.0405, mod: 0.0314, hard: 0.0287
OLD_test_iter 40000 2d cyclist --> easy: 0.4861, mod: 0.3255, hard: 0.3241
NEW_test_iter 40000 2d cyclist --> easy: 0.4460, mod: 0.2657, hard: 0.2633
OLD_test_iter 40000 gr cyclist --> easy: 0.1132, mod: 0.1058, hard: 0.1064
NEW_test_iter 40000 gr cyclist --> easy: 0.0375, mod: 0.0242, hard: 0.0238
OLD_test_iter 40000 3d cyclist --> easy: 0.1070, mod: 0.0909, hard: 0.0909
NEW_test_iter 40000 3d cyclist --> easy: 0.0213, mod: 0.0141, hard: 0.0144

Can you please tell me how can I obtain the same results as in the paper? Thank you!

could you please show me your depth_guided_config.py settings when you run train.sh,when i run train.sh,i couldn't get the results like yours.thank you

Chenzixi1 commented 3 years ago

hi, had you solve this problem. i am comfused too