Closed summm closed 1 year ago
新手学习中光是搭环境就用了好久时间,然后好像运行成功了训练可是又没找到如果训练成功了生成的模型在哪里
(fast38) PS C:\Users\Administrator\Desktop\code\python\FastestDet-main> python train.py --yaml weights/train/20230413-2-187/coco.yaml Load yaml sucess... <utils.tool.LoadYaml object at 0x0000026AC27A2D30> Initialize params from:./module/shufflenetv2.pth
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 24, 176, 176] 648 BatchNorm2d-2 [-1, 24, 176, 176] 48 ReLU-3 [-1, 24, 176, 176] 0 MaxPool2d-4 [-1, 24, 88, 88] 0 Conv2d-5 [-1, 24, 44, 44] 216 BatchNorm2d-6 [-1, 24, 44, 44] 48 Conv2d-7 [-1, 24, 44, 44] 576 BatchNorm2d-8 [-1, 24, 44, 44] 48 ReLU-9 [-1, 24, 44, 44] 0 Conv2d-10 [-1, 24, 88, 88] 576 BatchNorm2d-11 [-1, 24, 88, 88] 48 ReLU-12 [-1, 24, 88, 88] 0 Conv2d-13 [-1, 24, 44, 44] 216 BatchNorm2d-14 [-1, 24, 44, 44] 48 Conv2d-15 [-1, 24, 44, 44] 576 BatchNorm2d-16 [-1, 24, 44, 44] 48 ReLU-17 [-1, 24, 44, 44] 0 ShuffleV2Block-18 [-1, 48, 44, 44] 0 Conv2d-19 [-1, 24, 44, 44] 576 BatchNorm2d-20 [-1, 24, 44, 44] 48 ReLU-21 [-1, 24, 44, 44] 0 Conv2d-22 [-1, 24, 44, 44] 216 BatchNorm2d-23 [-1, 24, 44, 44] 48 Conv2d-24 [-1, 24, 44, 44] 576 BatchNorm2d-25 [-1, 24, 44, 44] 48 ReLU-26 [-1, 24, 44, 44] 0 ShuffleV2Block-27 [-1, 48, 44, 44] 0 Conv2d-28 [-1, 24, 44, 44] 576 BatchNorm2d-29 [-1, 24, 44, 44] 48 ReLU-30 [-1, 24, 44, 44] 0 Conv2d-31 [-1, 24, 44, 44] 216 BatchNorm2d-32 [-1, 24, 44, 44] 48 Conv2d-33 [-1, 24, 44, 44] 576 BatchNorm2d-34 [-1, 24, 44, 44] 48 ReLU-35 [-1, 24, 44, 44] 0 ShuffleV2Block-36 [-1, 48, 44, 44] 0 Conv2d-37 [-1, 24, 44, 44] 576 BatchNorm2d-38 [-1, 24, 44, 44] 48 ReLU-39 [-1, 24, 44, 44] 0 Conv2d-40 [-1, 24, 44, 44] 216 BatchNorm2d-41 [-1, 24, 44, 44] 48 Conv2d-42 [-1, 24, 44, 44] 576 BatchNorm2d-43 [-1, 24, 44, 44] 48 ReLU-44 [-1, 24, 44, 44] 0 ShuffleV2Block-45 [-1, 48, 44, 44] 0 Conv2d-46 [-1, 48, 22, 22] 432 BatchNorm2d-47 [-1, 48, 22, 22] 96 Conv2d-48 [-1, 48, 22, 22] 2,304 BatchNorm2d-49 [-1, 48, 22, 22] 96 ReLU-50 [-1, 48, 22, 22] 0 Conv2d-51 [-1, 48, 44, 44] 2,304 BatchNorm2d-52 [-1, 48, 44, 44] 96 ReLU-53 [-1, 48, 44, 44] 0 Conv2d-54 [-1, 48, 22, 22] 432 BatchNorm2d-55 [-1, 48, 22, 22] 96 Conv2d-56 [-1, 48, 22, 22] 2,304 BatchNorm2d-57 [-1, 48, 22, 22] 96 ReLU-58 [-1, 48, 22, 22] 0 ShuffleV2Block-59 [-1, 96, 22, 22] 0 Conv2d-60 [-1, 48, 22, 22] 2,304 BatchNorm2d-61 [-1, 48, 22, 22] 96 ReLU-62 [-1, 48, 22, 22] 0 Conv2d-63 [-1, 48, 22, 22] 432 BatchNorm2d-64 [-1, 48, 22, 22] 96 Conv2d-65 [-1, 48, 22, 22] 2,304 BatchNorm2d-66 [-1, 48, 22, 22] 96 ReLU-67 [-1, 48, 22, 22] 0 ShuffleV2Block-68 [-1, 96, 22, 22] 0 Conv2d-69 [-1, 48, 22, 22] 2,304 BatchNorm2d-70 [-1, 48, 22, 22] 96 ReLU-71 [-1, 48, 22, 22] 0 Conv2d-72 [-1, 48, 22, 22] 432 BatchNorm2d-73 [-1, 48, 22, 22] 96 Conv2d-74 [-1, 48, 22, 22] 2,304 BatchNorm2d-75 [-1, 48, 22, 22] 96 ReLU-76 [-1, 48, 22, 22] 0 ShuffleV2Block-77 [-1, 96, 22, 22] 0 Conv2d-78 [-1, 48, 22, 22] 2,304 BatchNorm2d-79 [-1, 48, 22, 22] 96 ReLU-80 [-1, 48, 22, 22] 0 Conv2d-81 [-1, 48, 22, 22] 432 BatchNorm2d-82 [-1, 48, 22, 22] 96 Conv2d-83 [-1, 48, 22, 22] 2,304 BatchNorm2d-84 [-1, 48, 22, 22] 96 ReLU-85 [-1, 48, 22, 22] 0 ShuffleV2Block-86 [-1, 96, 22, 22] 0 Conv2d-87 [-1, 48, 22, 22] 2,304 BatchNorm2d-88 [-1, 48, 22, 22] 96 ReLU-89 [-1, 48, 22, 22] 0 Conv2d-90 [-1, 48, 22, 22] 432 BatchNorm2d-91 [-1, 48, 22, 22] 96 Conv2d-92 [-1, 48, 22, 22] 2,304 BatchNorm2d-93 [-1, 48, 22, 22] 96 ReLU-94 [-1, 48, 22, 22] 0 ShuffleV2Block-95 [-1, 96, 22, 22] 0 Conv2d-96 [-1, 48, 22, 22] 2,304 BatchNorm2d-97 [-1, 48, 22, 22] 96 ReLU-98 [-1, 48, 22, 22] 0 Conv2d-99 [-1, 48, 22, 22] 432 BatchNorm2d-100 [-1, 48, 22, 22] 96 Conv2d-101 [-1, 48, 22, 22] 2,304 BatchNorm2d-102 [-1, 48, 22, 22] 96 ReLU-103 [-1, 48, 22, 22] 0 ShuffleV2Block-104 [-1, 96, 22, 22] 0 Conv2d-105 [-1, 48, 22, 22] 2,304 BatchNorm2d-106 [-1, 48, 22, 22] 96 ReLU-107 [-1, 48, 22, 22] 0 Conv2d-108 [-1, 48, 22, 22] 432 BatchNorm2d-109 [-1, 48, 22, 22] 96 Conv2d-110 [-1, 48, 22, 22] 2,304 BatchNorm2d-111 [-1, 48, 22, 22] 96 ReLU-112 [-1, 48, 22, 22] 0 ShuffleV2Block-113 [-1, 96, 22, 22] 0 Conv2d-114 [-1, 48, 22, 22] 2,304 BatchNorm2d-115 [-1, 48, 22, 22] 96 ReLU-116 [-1, 48, 22, 22] 0 Conv2d-117 [-1, 48, 22, 22] 432 BatchNorm2d-118 [-1, 48, 22, 22] 96 Conv2d-119 [-1, 48, 22, 22] 2,304 BatchNorm2d-120 [-1, 48, 22, 22] 96 ReLU-121 [-1, 48, 22, 22] 0 ShuffleV2Block-122 [-1, 96, 22, 22] 0 Conv2d-123 [-1, 96, 11, 11] 864 BatchNorm2d-124 [-1, 96, 11, 11] 192 Conv2d-125 [-1, 96, 11, 11] 9,216 BatchNorm2d-126 [-1, 96, 11, 11] 192 ReLU-127 [-1, 96, 11, 11] 0 Conv2d-128 [-1, 96, 22, 22] 9,216 BatchNorm2d-129 [-1, 96, 22, 22] 192 ReLU-130 [-1, 96, 22, 22] 0 Conv2d-131 [-1, 96, 11, 11] 864 BatchNorm2d-132 [-1, 96, 11, 11] 192 Conv2d-133 [-1, 96, 11, 11] 9,216 BatchNorm2d-134 [-1, 96, 11, 11] 192 ReLU-135 [-1, 96, 11, 11] 0 ShuffleV2Block-136 [-1, 192, 11, 11] 0 Conv2d-137 [-1, 96, 11, 11] 9,216 BatchNorm2d-138 [-1, 96, 11, 11] 192 ReLU-139 [-1, 96, 11, 11] 0 Conv2d-140 [-1, 96, 11, 11] 864 BatchNorm2d-141 [-1, 96, 11, 11] 192 Conv2d-142 [-1, 96, 11, 11] 9,216 BatchNorm2d-143 [-1, 96, 11, 11] 192 ReLU-144 [-1, 96, 11, 11] 0 ShuffleV2Block-145 [-1, 192, 11, 11] 0 Conv2d-146 [-1, 96, 11, 11] 9,216 BatchNorm2d-147 [-1, 96, 11, 11] 192 ReLU-148 [-1, 96, 11, 11] 0 Conv2d-149 [-1, 96, 11, 11] 864 BatchNorm2d-150 [-1, 96, 11, 11] 192 Conv2d-151 [-1, 96, 11, 11] 9,216 BatchNorm2d-152 [-1, 96, 11, 11] 192 ReLU-153 [-1, 96, 11, 11] 0 ShuffleV2Block-154 [-1, 192, 11, 11] 0 Conv2d-155 [-1, 96, 11, 11] 9,216 BatchNorm2d-156 [-1, 96, 11, 11] 192 ReLU-157 [-1, 96, 11, 11] 0 Conv2d-158 [-1, 96, 11, 11] 864 BatchNorm2d-159 [-1, 96, 11, 11] 192 Conv2d-160 [-1, 96, 11, 11] 9,216 BatchNorm2d-161 [-1, 96, 11, 11] 192 ReLU-162 [-1, 96, 11, 11] 0 ShuffleV2Block-163 [-1, 192, 11, 11] 0 ShuffleNetV2-164 [[-1, 48, 44, 44], [-1, 96, 22, 22], [-1, 192, 11, 11]] 0 Upsample-165 [-1, 192, 22, 22] 0 AvgPool2d-166 [-1, 48, 22, 22] 0 Conv2d-167 [-1, 96, 22, 22] 32,256 BatchNorm2d-168 [-1, 96, 22, 22] 192 ReLU-169 [-1, 96, 22, 22] 0 Conv1x1-170 [-1, 96, 22, 22] 0 Conv2d-171 [-1, 96, 22, 22] 2,400 BatchNorm2d-172 [-1, 96, 22, 22] 192 ReLU-173 [-1, 96, 22, 22] 0 Conv2d-174 [-1, 96, 22, 22] 2,400 BatchNorm2d-175 [-1, 96, 22, 22] 192 ReLU-176 [-1, 96, 22, 22] 0 Conv2d-177 [-1, 96, 22, 22] 2,400 BatchNorm2d-178 [-1, 96, 22, 22] 192 ReLU-179 [-1, 96, 22, 22] 0 Conv2d-180 [-1, 96, 22, 22] 2,400 BatchNorm2d-181 [-1, 96, 22, 22] 192 ReLU-182 [-1, 96, 22, 22] 0 Conv2d-183 [-1, 96, 22, 22] 2,400 BatchNorm2d-184 [-1, 96, 22, 22] 192 ReLU-185 [-1, 96, 22, 22] 0 Conv2d-186 [-1, 96, 22, 22] 2,400 BatchNorm2d-187 [-1, 96, 22, 22] 192 ReLU-188 [-1, 96, 22, 22] 0 Conv2d-189 [-1, 96, 22, 22] 27,648 BatchNorm2d-190 [-1, 96, 22, 22] 192 ReLU-191 [-1, 96, 22, 22] 0 SPP-192 [-1, 96, 22, 22] 0 Conv2d-193 [-1, 96, 22, 22] 9,216 BatchNorm2d-194 [-1, 96, 22, 22] 192 ReLU-195 [-1, 96, 22, 22] 0 Conv1x1-196 [-1, 96, 22, 22] 0 Conv2d-197 [-1, 96, 22, 22] 2,400 BatchNorm2d-198 [-1, 96, 22, 22] 192 ReLU-199 [-1, 96, 22, 22] 0 Conv2d-200 [-1, 1, 22, 22] 96 BatchNorm2d-201 [-1, 1, 22, 22] 2 Head-202 [-1, 1, 22, 22] 0 Sigmoid-203 [-1, 1, 22, 22] 0 Conv2d-204 [-1, 96, 22, 22] 2,400 BatchNorm2d-205 [-1, 96, 22, 22] 192 ReLU-206 [-1, 96, 22, 22] 0 Conv2d-207 [-1, 4, 22, 22] 384 BatchNorm2d-208 [-1, 4, 22, 22] 8 Head-209 [-1, 4, 22, 22] 0 Conv2d-210 [-1, 96, 22, 22] 2,400 BatchNorm2d-211 [-1, 96, 22, 22] 192 ReLU-212 [-1, 96, 22, 22] 0 Conv2d-213 [-1, 4, 22, 22] 384 BatchNorm2d-214 [-1, 4, 22, 22] 8 Head-215 [-1, 4, 22, 22] 0 Softmax-216 [-1, 4, 22, 22] 0 DetectHead-217 [-1, 9, 22, 22] 0
Total params: 237,042
Trainable params: 237,042 Non-trainable params: 0
Input size (MB): 1.42
Forward/backward pass size (MB): 14982.11 Params size (MB): 0.90 Estimated Total Size (MB): 14984.44 use SGD optimizer Starting training for 10 epochs... Epoch:0 LR:0.000000 IOU:0.683203 Obj:0.118574 Cls:1.722579 Total:9.085380: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00, 3.00s/it] Epoch:1 LR:0.000002 IOU:0.682660 Obj:0.117858 Cls:1.543631 Total:8.890644: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.23s/it] Epoch:2 LR:0.000026 IOU:0.642826 Obj:0.115852 Cls:1.679555 Total:8.675802: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.13s/it] Epoch:3 LR:0.000130 IOU:0.680697 Obj:0.117061 Cls:1.506619 Total:8.825181: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.28s/it] Epoch:4 LR:0.000410 IOU:0.693652 Obj:0.116068 Cls:1.497365 Total:8.903667: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.25s/it] Epoch:5 LR:0.001000 IOU:0.667514 Obj:0.118184 Cls:1.399224 Total:8.630288: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.17s/it] Epoch:6 LR:0.001000 IOU:0.641047 Obj:0.113830 Cls:1.065889 Total:8.015538: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.14s/it] Epoch:7 LR:0.001000 IOU:0.598921 Obj:0.112864 Cls:0.718651 Total:7.315843: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.23s/it] Epoch:8 LR:0.001000 IOU:0.596256 Obj:0.111394 Cls:0.472929 Total:7.025274: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.25s/it] Epoch:9 LR:0.001000 IOU:0.594581 Obj:0.108997 Cls:0.344135 Total:6.844735: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.38s/it] Epoch:10 LR:0.001000 IOU:0.586639 Obj:0.108114 Cls:0.251320 Total:6.674245: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.29s/it] computer mAP... 0%| | 0/1 [00:00<?, ?it/s]D :\python\anaconda\envs\fast38\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2228.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.46s/it] creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=0.03s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
训练应该没问题,在稳步收敛。
if epoch % 10 == 0 and epoch > 0:
self.model.eval()
print("computer mAP...")
mAP05 = self.evaluation.compute_map(self.val_dataloader, self.model)
torch.save(self.model.state_dict(), "checkpoint/weight_AP05:%f_%d-epoch.pth"%(mAP05, epoch))
这部分代码是保存权重的,设置没10轮保存一次,保存在checkpoint文件夹下。当然你可以根据自己的需求,对这些代码进行修改。
@JackyWang-001 感激,谢谢大佬回复,训练只进行了 这十轮,在写文件时出了错可能,以我目前学习进度无法理解哪里出了问题,在checkpoint生成了一个weight_AP05空文件,到这就没有再进行一下轮的训练了,请问要怎么进行接下接下去的调试,上面就是全部运行的结果,好像并没看到特别明显的报错
并不是,作者是在linux下写好的,windows也能跑但保存模型的问题在保存的文件名那里,冒号对于windows文件名格式是非法的,所以不会报错也不会保存成功
记得去掉冒号就好了
新手学习中光是搭环境就用了好久时间,然后好像运行成功了训练可是又没找到如果训练成功了生成的模型在哪里 (fast38) PS C:\Users\Administrator\Desktop\code\python\FastestDet-main> python train.py --yaml weights/train/20230413-2-187/coco.yaml Load yaml sucess... <utils.tool.LoadYaml object at 0x0000026AC27A2D30> Initialize params from:./module/shufflenetv2.pth
================================================================ Conv2d-1 [-1, 24, 176, 176] 648 BatchNorm2d-2 [-1, 24, 176, 176] 48 ReLU-3 [-1, 24, 176, 176] 0 MaxPool2d-4 [-1, 24, 88, 88] 0 Conv2d-5 [-1, 24, 44, 44] 216 BatchNorm2d-6 [-1, 24, 44, 44] 48 Conv2d-7 [-1, 24, 44, 44] 576 BatchNorm2d-8 [-1, 24, 44, 44] 48 ReLU-9 [-1, 24, 44, 44] 0 Conv2d-10 [-1, 24, 88, 88] 576 BatchNorm2d-11 [-1, 24, 88, 88] 48 ReLU-12 [-1, 24, 88, 88] 0 Conv2d-13 [-1, 24, 44, 44] 216 BatchNorm2d-14 [-1, 24, 44, 44] 48 Conv2d-15 [-1, 24, 44, 44] 576 BatchNorm2d-16 [-1, 24, 44, 44] 48 ReLU-17 [-1, 24, 44, 44] 0 ShuffleV2Block-18 [-1, 48, 44, 44] 0 Conv2d-19 [-1, 24, 44, 44] 576 BatchNorm2d-20 [-1, 24, 44, 44] 48 ReLU-21 [-1, 24, 44, 44] 0 Conv2d-22 [-1, 24, 44, 44] 216 BatchNorm2d-23 [-1, 24, 44, 44] 48 Conv2d-24 [-1, 24, 44, 44] 576 BatchNorm2d-25 [-1, 24, 44, 44] 48 ReLU-26 [-1, 24, 44, 44] 0 ShuffleV2Block-27 [-1, 48, 44, 44] 0 Conv2d-28 [-1, 24, 44, 44] 576 BatchNorm2d-29 [-1, 24, 44, 44] 48 ReLU-30 [-1, 24, 44, 44] 0 Conv2d-31 [-1, 24, 44, 44] 216 BatchNorm2d-32 [-1, 24, 44, 44] 48 Conv2d-33 [-1, 24, 44, 44] 576 BatchNorm2d-34 [-1, 24, 44, 44] 48 ReLU-35 [-1, 24, 44, 44] 0 ShuffleV2Block-36 [-1, 48, 44, 44] 0 Conv2d-37 [-1, 24, 44, 44] 576 BatchNorm2d-38 [-1, 24, 44, 44] 48 ReLU-39 [-1, 24, 44, 44] 0 Conv2d-40 [-1, 24, 44, 44] 216 BatchNorm2d-41 [-1, 24, 44, 44] 48 Conv2d-42 [-1, 24, 44, 44] 576 BatchNorm2d-43 [-1, 24, 44, 44] 48 ReLU-44 [-1, 24, 44, 44] 0 ShuffleV2Block-45 [-1, 48, 44, 44] 0 Conv2d-46 [-1, 48, 22, 22] 432 BatchNorm2d-47 [-1, 48, 22, 22] 96 Conv2d-48 [-1, 48, 22, 22] 2,304 BatchNorm2d-49 [-1, 48, 22, 22] 96 ReLU-50 [-1, 48, 22, 22] 0 Conv2d-51 [-1, 48, 44, 44] 2,304 BatchNorm2d-52 [-1, 48, 44, 44] 96 ReLU-53 [-1, 48, 44, 44] 0 Conv2d-54 [-1, 48, 22, 22] 432 BatchNorm2d-55 [-1, 48, 22, 22] 96 Conv2d-56 [-1, 48, 22, 22] 2,304 BatchNorm2d-57 [-1, 48, 22, 22] 96 ReLU-58 [-1, 48, 22, 22] 0 ShuffleV2Block-59 [-1, 96, 22, 22] 0 Conv2d-60 [-1, 48, 22, 22] 2,304 BatchNorm2d-61 [-1, 48, 22, 22] 96 ReLU-62 [-1, 48, 22, 22] 0 Conv2d-63 [-1, 48, 22, 22] 432 BatchNorm2d-64 [-1, 48, 22, 22] 96 Conv2d-65 [-1, 48, 22, 22] 2,304 BatchNorm2d-66 [-1, 48, 22, 22] 96 ReLU-67 [-1, 48, 22, 22] 0 ShuffleV2Block-68 [-1, 96, 22, 22] 0 Conv2d-69 [-1, 48, 22, 22] 2,304 BatchNorm2d-70 [-1, 48, 22, 22] 96 ReLU-71 [-1, 48, 22, 22] 0 Conv2d-72 [-1, 48, 22, 22] 432 BatchNorm2d-73 [-1, 48, 22, 22] 96 Conv2d-74 [-1, 48, 22, 22] 2,304 BatchNorm2d-75 [-1, 48, 22, 22] 96 ReLU-76 [-1, 48, 22, 22] 0 ShuffleV2Block-77 [-1, 96, 22, 22] 0 Conv2d-78 [-1, 48, 22, 22] 2,304 BatchNorm2d-79 [-1, 48, 22, 22] 96 ReLU-80 [-1, 48, 22, 22] 0 Conv2d-81 [-1, 48, 22, 22] 432 BatchNorm2d-82 [-1, 48, 22, 22] 96 Conv2d-83 [-1, 48, 22, 22] 2,304 BatchNorm2d-84 [-1, 48, 22, 22] 96 ReLU-85 [-1, 48, 22, 22] 0 ShuffleV2Block-86 [-1, 96, 22, 22] 0 Conv2d-87 [-1, 48, 22, 22] 2,304 BatchNorm2d-88 [-1, 48, 22, 22] 96 ReLU-89 [-1, 48, 22, 22] 0 Conv2d-90 [-1, 48, 22, 22] 432 BatchNorm2d-91 [-1, 48, 22, 22] 96 Conv2d-92 [-1, 48, 22, 22] 2,304 BatchNorm2d-93 [-1, 48, 22, 22] 96 ReLU-94 [-1, 48, 22, 22] 0 ShuffleV2Block-95 [-1, 96, 22, 22] 0 Conv2d-96 [-1, 48, 22, 22] 2,304 BatchNorm2d-97 [-1, 48, 22, 22] 96 ReLU-98 [-1, 48, 22, 22] 0 Conv2d-99 [-1, 48, 22, 22] 432 BatchNorm2d-100 [-1, 48, 22, 22] 96 Conv2d-101 [-1, 48, 22, 22] 2,304 BatchNorm2d-102 [-1, 48, 22, 22] 96 ReLU-103 [-1, 48, 22, 22] 0 ShuffleV2Block-104 [-1, 96, 22, 22] 0 Conv2d-105 [-1, 48, 22, 22] 2,304 BatchNorm2d-106 [-1, 48, 22, 22] 96 ReLU-107 [-1, 48, 22, 22] 0 Conv2d-108 [-1, 48, 22, 22] 432 BatchNorm2d-109 [-1, 48, 22, 22] 96 Conv2d-110 [-1, 48, 22, 22] 2,304 BatchNorm2d-111 [-1, 48, 22, 22] 96 ReLU-112 [-1, 48, 22, 22] 0 ShuffleV2Block-113 [-1, 96, 22, 22] 0 Conv2d-114 [-1, 48, 22, 22] 2,304 BatchNorm2d-115 [-1, 48, 22, 22] 96 ReLU-116 [-1, 48, 22, 22] 0 Conv2d-117 [-1, 48, 22, 22] 432 BatchNorm2d-118 [-1, 48, 22, 22] 96 Conv2d-119 [-1, 48, 22, 22] 2,304 BatchNorm2d-120 [-1, 48, 22, 22] 96 ReLU-121 [-1, 48, 22, 22] 0 ShuffleV2Block-122 [-1, 96, 22, 22] 0 Conv2d-123 [-1, 96, 11, 11] 864 BatchNorm2d-124 [-1, 96, 11, 11] 192 Conv2d-125 [-1, 96, 11, 11] 9,216 BatchNorm2d-126 [-1, 96, 11, 11] 192 ReLU-127 [-1, 96, 11, 11] 0 Conv2d-128 [-1, 96, 22, 22] 9,216 BatchNorm2d-129 [-1, 96, 22, 22] 192 ReLU-130 [-1, 96, 22, 22] 0 Conv2d-131 [-1, 96, 11, 11] 864 BatchNorm2d-132 [-1, 96, 11, 11] 192 Conv2d-133 [-1, 96, 11, 11] 9,216 BatchNorm2d-134 [-1, 96, 11, 11] 192 ReLU-135 [-1, 96, 11, 11] 0 ShuffleV2Block-136 [-1, 192, 11, 11] 0 Conv2d-137 [-1, 96, 11, 11] 9,216 BatchNorm2d-138 [-1, 96, 11, 11] 192 ReLU-139 [-1, 96, 11, 11] 0 Conv2d-140 [-1, 96, 11, 11] 864 BatchNorm2d-141 [-1, 96, 11, 11] 192 Conv2d-142 [-1, 96, 11, 11] 9,216 BatchNorm2d-143 [-1, 96, 11, 11] 192 ReLU-144 [-1, 96, 11, 11] 0 ShuffleV2Block-145 [-1, 192, 11, 11] 0 Conv2d-146 [-1, 96, 11, 11] 9,216 BatchNorm2d-147 [-1, 96, 11, 11] 192 ReLU-148 [-1, 96, 11, 11] 0 Conv2d-149 [-1, 96, 11, 11] 864 BatchNorm2d-150 [-1, 96, 11, 11] 192 Conv2d-151 [-1, 96, 11, 11] 9,216 BatchNorm2d-152 [-1, 96, 11, 11] 192 ReLU-153 [-1, 96, 11, 11] 0 ShuffleV2Block-154 [-1, 192, 11, 11] 0 Conv2d-155 [-1, 96, 11, 11] 9,216 BatchNorm2d-156 [-1, 96, 11, 11] 192 ReLU-157 [-1, 96, 11, 11] 0 Conv2d-158 [-1, 96, 11, 11] 864 BatchNorm2d-159 [-1, 96, 11, 11] 192 Conv2d-160 [-1, 96, 11, 11] 9,216 BatchNorm2d-161 [-1, 96, 11, 11] 192 ReLU-162 [-1, 96, 11, 11] 0 ShuffleV2Block-163 [-1, 192, 11, 11] 0 ShuffleNetV2-164 [[-1, 48, 44, 44], [-1, 96, 22, 22], [-1, 192, 11, 11]] 0 Upsample-165 [-1, 192, 22, 22] 0 AvgPool2d-166 [-1, 48, 22, 22] 0 Conv2d-167 [-1, 96, 22, 22] 32,256 BatchNorm2d-168 [-1, 96, 22, 22] 192 ReLU-169 [-1, 96, 22, 22] 0 Conv1x1-170 [-1, 96, 22, 22] 0 Conv2d-171 [-1, 96, 22, 22] 2,400 BatchNorm2d-172 [-1, 96, 22, 22] 192 ReLU-173 [-1, 96, 22, 22] 0 Conv2d-174 [-1, 96, 22, 22] 2,400 BatchNorm2d-175 [-1, 96, 22, 22] 192 ReLU-176 [-1, 96, 22, 22] 0 Conv2d-177 [-1, 96, 22, 22] 2,400 BatchNorm2d-178 [-1, 96, 22, 22] 192 ReLU-179 [-1, 96, 22, 22] 0 Conv2d-180 [-1, 96, 22, 22] 2,400 BatchNorm2d-181 [-1, 96, 22, 22] 192 ReLU-182 [-1, 96, 22, 22] 0 Conv2d-183 [-1, 96, 22, 22] 2,400 BatchNorm2d-184 [-1, 96, 22, 22] 192 ReLU-185 [-1, 96, 22, 22] 0 Conv2d-186 [-1, 96, 22, 22] 2,400 BatchNorm2d-187 [-1, 96, 22, 22] 192 ReLU-188 [-1, 96, 22, 22] 0 Conv2d-189 [-1, 96, 22, 22] 27,648 BatchNorm2d-190 [-1, 96, 22, 22] 192 ReLU-191 [-1, 96, 22, 22] 0 SPP-192 [-1, 96, 22, 22] 0 Conv2d-193 [-1, 96, 22, 22] 9,216 BatchNorm2d-194 [-1, 96, 22, 22] 192 ReLU-195 [-1, 96, 22, 22] 0 Conv1x1-196 [-1, 96, 22, 22] 0 Conv2d-197 [-1, 96, 22, 22] 2,400 BatchNorm2d-198 [-1, 96, 22, 22] 192 ReLU-199 [-1, 96, 22, 22] 0 Conv2d-200 [-1, 1, 22, 22] 96 BatchNorm2d-201 [-1, 1, 22, 22] 2 Head-202 [-1, 1, 22, 22] 0 Sigmoid-203 [-1, 1, 22, 22] 0 Conv2d-204 [-1, 96, 22, 22] 2,400 BatchNorm2d-205 [-1, 96, 22, 22] 192 ReLU-206 [-1, 96, 22, 22] 0 Conv2d-207 [-1, 4, 22, 22] 384 BatchNorm2d-208 [-1, 4, 22, 22] 8 Head-209 [-1, 4, 22, 22] 0 Conv2d-210 [-1, 96, 22, 22] 2,400 BatchNorm2d-211 [-1, 96, 22, 22] 192 ReLU-212 [-1, 96, 22, 22] 0 Conv2d-213 [-1, 4, 22, 22] 384 BatchNorm2d-214 [-1, 4, 22, 22] 8 Head-215 [-1, 4, 22, 22] 0 Softmax-216 [-1, 4, 22, 22] 0 DetectHead-217 [-1, 9, 22, 22] 0
Total params: 237,042 Trainable params: 237,042 Non-trainable params: 0
Input size (MB): 1.42 Forward/backward pass size (MB): 14982.11 Params size (MB): 0.90 Estimated Total Size (MB): 14984.44
use SGD optimizer Starting training for 10 epochs... Epoch:0 LR:0.000000 IOU:0.683203 Obj:0.118574 Cls:1.722579 Total:9.085380: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00, 3.00s/it] Epoch:1 LR:0.000002 IOU:0.682660 Obj:0.117858 Cls:1.543631 Total:8.890644: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.23s/it] Epoch:2 LR:0.000026 IOU:0.642826 Obj:0.115852 Cls:1.679555 Total:8.675802: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.13s/it] Epoch:3 LR:0.000130 IOU:0.680697 Obj:0.117061 Cls:1.506619 Total:8.825181: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.28s/it] Epoch:4 LR:0.000410 IOU:0.693652 Obj:0.116068 Cls:1.497365 Total:8.903667: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.25s/it] Epoch:5 LR:0.001000 IOU:0.667514 Obj:0.118184 Cls:1.399224 Total:8.630288: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.17s/it] Epoch:6 LR:0.001000 IOU:0.641047 Obj:0.113830 Cls:1.065889 Total:8.015538: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.14s/it] Epoch:7 LR:0.001000 IOU:0.598921 Obj:0.112864 Cls:0.718651 Total:7.315843: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.23s/it] Epoch:8 LR:0.001000 IOU:0.596256 Obj:0.111394 Cls:0.472929 Total:7.025274: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.25s/it] Epoch:9 LR:0.001000 IOU:0.594581 Obj:0.108997 Cls:0.344135 Total:6.844735: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.38s/it] Epoch:10 LR:0.001000 IOU:0.586639 Obj:0.108114 Cls:0.251320 Total:6.674245: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.29s/it] computer mAP... 0%| | 0/1 [00:00<?, ?it/s]D :\python\anaconda\envs\fast38\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at
C:\actions-runner_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2228.) return _VF.meshgrid(tensors, *kwargs) # type: ignore[attr-defined] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.46s/it] creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type bbox* DONE (t=0.03s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000