:zap: Based on yolo's ultra-lightweight universal target detection algorithm, the calculation amount is only 250mflops, the ncnn model size is only 666kb, the Raspberry Pi 3b can run up to 15fps+, and the mobile terminal can run up to 178fps+
I used CUDA 10.2,cudnn 7.6.5,GPU NVIDIA GeForce RTX 2060
I have set up in Makefile
GPU=1
CUDNN=1
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda-10.2/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda-10.2/lib64 -lcuda -lcudart -lcublas -lcurand
I used CUDA 10.2,cudnn 7.6.5,GPU NVIDIA GeForce RTX 2060
I have set up in Makefile GPU=1 CUDNN=1 ifeq ($(GPU), 1) COMMON+= -DGPU -I/usr/local/cuda-10.2/include/ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda-10.2/lib64 -lcuda -lcudart -lcublas -lcurand
C:\Yolo-Fastest\build\darknet\x64> ./darknet.exe detector test ./cfg/voc.data ./cfg/yolo-fastest.cfg ./cfg/yolo-fastest.weights ./data/person.jpg -i 1 -thresh 0.25 -out_filename ./data/person_output.jpg
CUDA status Error: file: c:\yolo-fastest\src\dark_cuda.c : cuda_set_device() : line: 39 : build time: Nov 24 2020 - 18:36:35 CUDA Error: invalid device ordinal
Can anyone help to fix this?