Open sanket1105 opened 1 year ago
What's wrong with this code? Given my "y_train" has 2 unique values: 0 and 1.
Output: Unique values in target variable: 2 Classes in IcpClassifier before fit: None Classes in IcpClassifier after fit: None
`from nonconformist.icp import IcpClassifier from nonconformist.nc import ClassifierNc, MarginErrFunc import catboost import numpy as np
model = catboost.CatBoostClassifier(iterations=100, loss_function='Logloss', depth=5, eval_metric='Logloss', random_seed=42, learning_rate=0.1, leaf_estimation_iterations=10, verbose=False)
model.fit(train_X, train_y) nc = ClassifierNc(model) icp = IcpClassifier(nc)
print("Unique values in target variable:", train_y.nunique())
print("Classes in IcpClassifier before fit:", icp.classes)
icp.fit(train_X, train_y)
print("Classes in IcpClassifier after fit:", icp.classes)
prediction_intervals = icp.predict(test_X, significance=0.05) `
What's wrong with this code? Given my "y_train" has 2 unique values: 0 and 1.
Output: Unique values in target variable: 2 Classes in IcpClassifier before fit: None Classes in IcpClassifier after fit: None
`from nonconformist.icp import IcpClassifier from nonconformist.nc import ClassifierNc, MarginErrFunc import catboost import numpy as np
Create a CatBoost classifier
model = catboost.CatBoostClassifier(iterations=100, loss_function='Logloss', depth=5, eval_metric='Logloss', random_seed=42, learning_rate=0.1, leaf_estimation_iterations=10, verbose=False)
Initialing the model
model.fit(train_X, train_y) nc = ClassifierNc(model) icp = IcpClassifier(nc)
Print information about the target variable
print("Unique values in target variable:", train_y.nunique())
Print classes in IcpClassifier before fit
print("Classes in IcpClassifier before fit:", icp.classes)
Fit the IcpClassifier with the training data
icp.fit(train_X, train_y)
Print classes in IcpClassifier after fit
print("Classes in IcpClassifier after fit:", icp.classes)
Obtain prediction intervals for the test set
prediction_intervals = icp.predict(test_X, significance=0.05) `