Closed strengejacke closed 5 years ago
When I use update() to re-fit a null-model, I get a warning, and the "null-model" seems to be the full-model.
update()
Could you help me regarding how I can refit the model using update() to get a null-model?
fm1 <- mixed_model(y ~ sex * time, random = ~ 1 | id, data = DF, family = zi.poisson(), zi_fixed = ~ sex) fm1_null <- update(fm1, "y ~ 1") #> Warning in mixed_model(fixed = y ~ sex * time, random = ~1 | id, data = #> DF, : unknown names in control: formula summary(fm1_null) #> #> Call: #> mixed_model(fixed = y ~ sex * time, random = ~1 | id, data = DF, #> family = zi.poisson(), zi_fixed = ~sex, formula = y ~ sex + #> time + sex:time) #> #> Data Descriptives: #> Number of Observations: 800 #> Number of Groups: 100 #> #> Model: #> family: zero-inflated poisson #> link: log #> #> Fit statistics: #> log.Lik AIC BIC #> -2223.937 4461.874 4480.11 #> #> Random effects covariance matrix: #> StdDev #> (Intercept) 0.8272898 #> #> Fixed effects: #> Estimate Std.Err z-value p-value #> (Intercept) 1.5276 0.1288 11.8605 < 1e-04 #> sexfemale 0.0174 0.1819 0.0954 0.92396 #> time -0.0040 0.0159 -0.2542 0.79937 #> sexfemale:time 0.0004 0.0230 0.0188 0.98496 #> #> Zero-part coefficients: #> Estimate Std.Err z-value p-value #> (Intercept) -1.2106 0.1411 -8.5811 < 1e-04 #> sexfemale 0.4986 0.1823 2.7348 0.0062411 #> #> Integration: #> method: adaptive Gauss-Hermite quadrature rule #> quadrature points: 11 #> #> Optimization: #> method: hybrid EM and quasi-Newton #> converged: TRUE
Created on 2019-03-20 by the reprex package (v0.2.1)
This should be done via update(fm1, fixed = y ~ 1).
update(fm1, fixed = y ~ 1)
When I use
update()
to re-fit a null-model, I get a warning, and the "null-model" seems to be the full-model.Could you help me regarding how I can refit the model using
update()
to get a null-model?Created on 2019-03-20 by the reprex package (v0.2.1)