Closed geo47 closed 3 years ago
@geo47
did you use bert-base-cased
or bert-large-cased
?
i had the experiments w/ bellow settings. especially larger learning rate, longer epoch.
$ python preprocess.py --config=configs/config-bert.json --data_dir=data/conll2003 --bert_model_name_or_path=./embeddings/bert-large-cased
$ python train.py --config=configs/config-bert.json --data_dir=data/conll2003 --save_path=pytorch-model-bert.pt --bert_model_name_or_path=./embeddings/bert-large-cased --bert_output_dir=bert-checkpoint --batch_size=16 --lr=3e-4 --epoch=64 --use_crf --bert_use_feature_based
@dsindex
Oh sorry I did not mention this:
--data_dir=data/conll2003 --bert_model_name_or_path=bert-base-cased
But even with bert-base-cased, you mentioned your results like this:
BERT-base(cased), BiLSTM-CRF | 90.17 | | word | 43.4804 /
Thanks for your help
@dsindex
Oh sorry I did not mention this:
--data_dir=data/conll2003 --bert_model_name_or_path=bert-base-cased
But even with bert-base-cased, you mentioned your results like this:
BERT-base(cased), BiLSTM-CRF | 90.17 | | word | 43.4804 /
Thanks for your help
I am sorry, I think, I made some mistake. So please hold on, I am training it again and let you know :-)
Hello @dsindex
Alright, I got the results correct :-)
BERT-base(cased), BiLSTM-CRF || value = 0.913481 || word / pos || epoch=30 / bert_use_feature_based
Thanks :-)
Hello,
The BERT-BiLST-CRF model runs about 28 epochs (including multiple patience epochs) and stopped at the best F1 value = 0.760492. While your results show it's score more than 90.
INFO:__main__:EarlyStopping Status: _step / patience = 7 / 7, value = 0.760492
I wonder if I am missing parameters...
Using default bert-config for preprocess data and training.
bert-config-json: