Closed wangjiyuan9 closed 12 months ago
Hi there, this is Amazing work, undoubtedly! But I'd like to ask if you published something wrong in your training command:
$ python main.py --dir_data datta_path --data_name KITTIDC --split_json ../data_json/kitti_dp.json \ --patch_height 352 --patch_width
906
--GPUs 0,1,2,3 --loss 1.0L1+1.0L2+1.0*DDIM --epochs 30 \ --batch_size 8 --max_depth 88.0 --save NAME_TO_SAVE \ --model_name DiffusionDCbase --backbone_module swin --backbone_name swin_large_naive_l4w722422k --head_specify DDIMDepthEstimate_Swin_ADDHAHI
In your paper there are only 706*352, what is 906 ?
Hi thanks for interest.
This is actually crop_widthcrop_height of input image. The final version used 706352 size for training. However, for train from scratch 906 is more stable.
Thanks for you reply!
Hi there, this is Amazing work, undoubtedly! But I'd like to ask if you published something wrong in your training command:
$ python main.py --dir_data datta_path --data_name KITTIDC --split_json ../data_json/kitti_dp.json \ --patch_height 352 --patch_width
--GPUs 0,1,2,3 --loss 1.0L1+1.0L2+1.0*DDIM --epochs 30 \ --batch_size 8 --max_depth 88.0 --save NAME_TO_SAVE \ --model_name DiffusionDCbase --backbone_module swin --backbone_name swin_large_naive_l4w722422k --head_specify DDIMDepthEstimate_Swin_ADDHAHI
In your paper there are only 706*352, what is 906 ?