durack1 / CMIPOcean

Creative Commons Zero v1.0 Universal
0 stars 1 forks source link

Populating NOAA-GFDL simulation ocean configs #2

Open durack1 opened 3 years ago

durack1 commented 3 years ago

@stephengriffies thanks for engaging on this. It would be great if we can collate the NOAA-GFDL information for all the contributed simulations, so

mipEra srcid actId expId ripf
CMIP6 GFDL-CM4 CMIP 1pctCO2, abrupt-4xCO2, historical, piControl r1i1p1f1
CMIP6 GFDL-CM4 DAMIP hist-nat r1-3i1p1f1
CMIP6 GFDL-CM4 OMIP omip1 r1i1p1f1
CMIP6 GFDL-CM4 ScenarioMIP ssp245, ssp585 r1i1p1f1
CMIP6 GFDL-ESM2M FAFMIP faf-all, faf-heat, faf-heat-NA0pct, faf-heat-NA50pct, faf-passiveheat, faf-stress, faf-water r1i1p1f1
CMIP6 GFDL-ESM4 C4MIP 1pctCO2-bgc, 1pctCO2-rad, esm-ssp585 r1i1p1f1
CMIP6 GFDL-ESM4 CMIP 1pctCO2, abrupt-4xCO2, esm-hist, esm-piControl, historical, piControl r1-3i1p1f1
CMIP6 GFDL-ESM4 DAMIP hist-GHG, hist-aer, hist-nat r1-3i1p1f1
CMIP6 GFDL-ESM4 ScenarioMIP ssp119, ssp126, ssp245, ssp370, ssp585 r1-3i1p1f1
CMIP5 GFDL-CM2p1 CMIP historical r1-10i1p1
CMIP5 GFDL-CM2p1 ScenarioMIP rcp45 r1-10i1p1
CMIP5 GFDL-CM3 CMIP 1pctCO2, abrupt4xCO2, historical, piControl r1-12i1p1
CMIP5 GFDL-CM3 DAMIP historicalGHG, historicalMisc, historicalNat* r1-5i1p1-2
CMIP5 GFDL-CM3 ScenarioMIP rcp26, rcp45, rcp60, rcp85 r1-5i1p1
CMIP5 GFDL-ESM2G CMIP 1pctCO2, abrupt4xCO2, esmControl, esmHistorical, historical, piControl r1i1p1-2
CMIP5 GFDL-ESM2G DAMIP historicalMisc* r1i1p3-4
CMIP5 GFDL-ESM2G ScenarioMIP esmrcp85*, rcp26, rcp45, rcp60, rcp85 r1-5i1p1
CMIP5 GFDL-ESM2M CMIP 1pctCO2, abrupt4xCO2, esmControl, esmFdbk1, esmFdbk2, esmFixClim1, esmFixClim2, esmHistorical, historical, piControl r1i1p1-2
CMIP5 GFDL-ESM2M DAMIP historicalGHG, historicalMisc, historicalNat* r1i1p1-8
CMIP5 GFDL-ESM2M ScenarioMIP esmrcp85*, rcp26, rcp45, rcp60, rcp85 r1i1p1
CMIP5 GFDL-HIRAM-C180 CMIP amip, sst2030, sst2090, sst2090rcp45 r1-3i1p1-2
CMIP5 GFDL-HIRAM-C360 CMIP amip, sst2030, sst2090 r1-3i1p1-2
CMIP3 gfdl_cm2_0 CMIP 1pctCO2, 1pctto2x, commit, historical, piControl run1-3
CMIP3 gfdl_cm2_0 ScenarioMIP sreasa1b, sreasa2, sresb1 run1-3
CMIP3 gfdl_cm2_1 CMIP 1pctCO2, 1pctto2x, commit, historical, piControl run1-5
CMIP3 gfdl_cm2_1 ScenarioMIP sreasa1b, sreasa2, sresb1 run1

_ denotes activity_id needs updating in the database (plan to do this tomorrow, also need to declare decadal as DCPP, need to clarify sst2030, sst2090, esmFdbk1, esmFdbk2, esmFixClim1, esmFixClim2 what are they?)_

To clarify, some remapping (plan to do this tomorrow): mixed-layer scheme -> boundary-layer scheme (mld) [co-locate with vertical diffusivity scheme] horizontal resolution -> native horizontal resolution vertical resolution -> native vertical resolution

Co-locate in the table (plan to do this tomorrow) boundary-layer scheme (mld) & vertical diffusivity scheme [Would be useful to get feedback from OMDP about this query - how best to attempt to quantify vertical diffusivity of configuration] native horizontal resolution & native vertical resolution anthropogenic aerosol forcing & volcanic forcing [aerosol indirect effect - yes/no for the atmos model would be useful to know]

To-do:

@vnaik60 pinging you on this thread, some of the coupled simulation forcing info may be trivially easy for you to provide

StephenGriffies commented 3 years ago

I am unable to see the information columns to this table. Is that coming later or something I should be seeing. I do not recall all the detailed information requested...

durack1 commented 3 years ago

@StephenGriffies here's a text file in the format that will allow for the missing values to be filled tableForCompletion.txt and the updated text file with the new format (updated below) tableForCompletion2.txt

The values we're chasing are:

'equation of state (and constants)' - EOS (+ constants)
'specific heat capacity (cpocean)'
'reference density (boussinesq, rhozero)'
'freezing equation'
'angular rotation of planet (radians s-1)'
'gravitational acceleration (m s-2)'
'native horizontal resolution'
'native vertical resolution'
'vertical diffusivity scheme'
'boundary-layer (mld) scheme'
'sea water volume'
'initialization observed climatology'
'spinup length (years)'
'anthropogenic aerosol forcing'
'volcanic forcing'
'aerosol indirect effects'
durack1 commented 3 years ago

@StephenGriffies those new config orderings (which make more sense, e.g. resolutions grouped together) are now live, see CMIP6, CMIP5, and CMIP3

durack1 commented 3 years ago
@StephenGriffies it seems some of the config information is available on the ES-DOC explorer, see GFDL-CM4: srcId EOS (+ constants) cpocean rhozero
GFDL-CM4 Wright, 1997 (JAOT) (thetao, so/Sp) 3992.0 1035.0
StephenGriffies commented 3 years ago

Equation of state CMIP6: GFDL-CM4, GFDL-ESM4 Wright (1997) CMIP6: GFDL-ESM2M Jackett, McDougall, Feistel, Wright, and Griffies (2006) CMIP5: GFDL-CM2p1, GFDL-CM3, GFDL-ESM2M, GFDL-HIRAM-C180, GFDL-HIRAM-C360 Jackett, McDougall, Feistel, Wright, and Griffies (2006) CMIP5: GFDL-ESM2G Wright (1997) CMIP3: gfdl_cm2_0, gfdl_cm2_1 Jackett, McDougall, Feistel, Wright, and Griffies (2006)

freezing point of seawater CMIP6: GFDL-CM4, GFDL-ESM4 T_Fr = dTFr_dS S + dTFr_dp pres with dTFr_dS=-0.054 and dTFr_dp = -7.75e-8, and press=gauge pressure in Pa CMIP6: GFDL-ESM2M T_Fr = dTFr_dS S with dTFr_dS=-0.054 CMIP5: GFDL-CM2p1, GFDL-CM3, GFDL-ESM2M, GFDL-HIRAM-C180, GFDL-HIRAM-C360 T_Fr = dTFr_dS S with dTFr_dS=-0.054 CMIP5: GFDL-ESM2G T_Fr = dTFr_dS S with dTFr_dS=-0.054 CMIP3: gfdl_cm2_0, gfdl_cm2_1 T_Fr = dTFr_dS S with dTFr_dS=-0.054

cpocean CMIP6: GFDL-CM4, GFDL-ESM4 cpocean = 3992.0 CMIP6: GFDL-ESM2M cpocean = 3992.1 CMIP5: GFDL-CM2p1, GFDL-CM3, GFDL-ESM2M, GFDL-HIRAM-C180, GFDL-HIRAM-C360 cpocean = 3992.1 CMIP5: GFDL-ESM2G cpocean = 3925.0 CMIP3: gfdl_cm2_0, gfdl_cm2_1 cpocean = 3992.1

ang. rotation of planet (radians s-1):
All models use rotation = 7.2921E-05

gravitational accel. (m s-2) All models use grav = 9.8

reference density (boussinesq) All models use 1035 kg/m3

ocean volume CMIP6: GFDL-CM4 vol = 1.33511E+18 m3 GFDL-ESM4 vol = 1.33480E+18 m3 GFDL-ESM2M vol = 1.325363E+18 m3 CMIP5: GFDL-CM2p1 = GFDL-CM3 =GFDL-ESM2M =GFDL-HIRAM-C180=GFDL-HIRAM-C360 vol = 1.325363E+18 m3 GFDL-ESM2G vol = 1.33291E+18 m3 CMIP3: gfdl_cm2_0 = gfdl_cm2_1 = 1.325363E+18 m3

native horizontal ocean resolution CMIP6 models CM4: 1440(long) x 1080(lat)
ESM4: 720 (long) x 576(lat) ESM2M: 360(long) x 200 (lat) CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-ESM2M =GFDL-HIRAM-C180=GFDL-HIRAM-C360 = 360(long) x 200 (lat) ESM2G: 360(long) x 210 (lat) CMIP3: gfdl_cm2_0 = gfdl_cm2_1 = 360(long) x 200 (lat)

native vertical resolution CMIP6 models CM4: 75 hybrid layers (z and rho2000) ESM4: 75 hybrid layers (z and rho2000) ESM2M: 50 z vertical levels CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-ESM2M =GFDL-HIRAM-C180=GFDL-HIRAM-C360 = 50 z vertical levels ESM2G: 63 rho2000 layers + 5 z-like layers in upper boundary CMIP3: gfdl_cm2_0 = gfdl_cm2_1 = 50 z-vertical levels

vertical diffusivity scheme CMIP6 models CM4: shear mixing(Jackson et al 2008)+tide mixing(Melet et al 2013)+constant background diffusivityand rho2000) ESM4: shear mixing(Jackson et al 2008)+tide mixing(Melet et al 2013)+constant background diffusivityand rho2000) ESM2M: shear mixing(Large et al 1994)+tide mixing(Simmons et al 2004)+constant background diffusivity CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-ESM2M =GFDL-HIRAM-C180=GFDL-HIRAM-C360 = shear mixing(Large et al 1994)+tide mixing(Simmons et al 2004)+constant background diffusivity ESM2G: ? CMIP3: gfdl_cm2_0=gfdl_cm2_1 = shear mixing(Large et al 1994)+tide mixing(Simmons et al 2004)+constant background diffusivity

boundary-layer (mld) scheme CMIP6 models CM4: Reichl and Hallberg (2018) energy based boundary layer2013)+constant background diffusivityand rho2000) ESM4: Reichl and Hallberg (2018) energy based boundary layer2013)+constant background diffusivityand rho2000) ESM2M: KPP (Large et al 1994)diffusivity CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-ESM2M =GFDL-HIRAM-C180=GFDL-HIRAM-C360 = KPP (Large et al 1994) ESM2G: ? CMIP3: gfdl_cm2_0=gfdl_cm2_1 = KPP (Large et al 1994)

initialization observed climatology: CMIP6 models CM4: WOA2013 ESM4: WOA2013 ESM2M: WOA2005 CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-HIRAM-C180=GFDL-HIRAM-C360 = various steps starting from WOA1998 ESM2M: WOA2005 CMIP3: gfdl_cm2_0=gfdl_cm2_1 = various steps starting from WOA1998

spinup length (years) CMIP6 models GFDL-CM4: 600 years GFDL-ESM4: 1000 years GFDL-ESM2M: 1000 years CMIP5 models GFDL-CM2.1: 300 years GFDL-ESM2M: 1000 years

anthropogenic aerosol forcing (unsure what to say here) CMIP6 models CM4: WOA2013: ESM4: WOA2013: ESM2M: CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-HIRAM-C180=GFDL-HIRAM-C360 ESM2M: WOA2005 CMIP3: gfdl_cm2_0=gfdl_cm2_1

aerosol indirect effects (unsure what to say here) CMIP6 models CM4: WOA2013 ESM4: WOA2013 ESM2M: WOA2005 CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-HIRAM-C180=GFDL-HIRAM-C360 ESM2M: WOA2005 CMIP3: gfdl_cm2_0=gfdl_cm2_1

volcanic forcing (unsure what to say here) CMIP6 models CM4: WOA2013 ESM4: WOA2013 ESM2M: WOA2005 CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-HIRAM-C180=GFDL-HIRAM-C360 ESM2M: WOA2005 CMIP3: gfdl_cm2_0=gfdl_cm2_1

vnaik60 commented 3 years ago

For GFDL-CM4, GFDL-ESM4: 'anthropogenic aerosol forcing' - emission-driven based on input4MIPs, CM4 has simplified chemistry 'volcanic forcing' - prescribed aerosol optical properties based on input4MIPs 'aerosol indirect effects' - yes, based on bulk mass concentration

For GFDL-CM3: 'anthropogenic aerosol forcing' - emission-driven based on Lamarque et al (2010), full chemistry 'volcanic forcing' - prescribed aerosol optical properties 'aerosol indirect effects' - yes, based on bulk mass concentration

For GFDL-ESM2M, ESM2G: 'anthropogenic aerosol forcing' - prescribed aerosol concentration 'volcanic forcing' - prescribed aerosol optical properties 'aerosol indirect effects' - prescribed

For gfdl_cm2_0, gfdl_cm_1: 'anthropogenic aerosol forcing' - prescribe aerosol concentration 'volcanic forcing' - prescribed aerosol optical properties 'aerosol indirect effects' - prescribed

durack1 commented 3 years ago

@StephenGriffies just trying to clean up the above:

Some standing questions (in red below - UPDATED following thread below)

ang. rotation of planet (radians s-1)

All models 7.2921E-05

gravitational accel. (m s-2)

All models 9.8

reference density (boussinesq; kg m-3)

All models 1035

Equation of state

CMIP6: CM4+ESM4 Wright, 1997 (EOS-80; thetao, so/Sp) ESM2M Jackett et al., 2006 (EOS-80; thetao, so/Sp) CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 Jackett et al., 2006 (EOS-80; thetao, so/Sp) ESM2G Wright, 1997 (EOS-80; thetao, so/Sp) CMIP3: cm2_0, cm2_1 Jackett et al., 2006 (EOS-80; thetao, so/Sp)

freezing point of seawater

CMIP6: CM4+ESM4 T_Fr = dTFr_dS S + dTFr_dp pres; dTFr_dS = -0.054, dTFr_dp = -7.75e-8, pres = gauge pressure (Pa) ESM2M T_Fr = dTFr_dS S; dTFr_dS = -0.054 CMIP5: CM2p1, CM3, ESM2M, ESM2G, HIRAM-C180, HIRAM-C360 T_Fr = dTFr_dS S; dTFr_dS = -0.054 CMIP3: cm2_0, cm2_1 T_Fr = dTFr_dS * S; dTFr_dS = -0.054

cpocean

CMIP6: CM4+ESM4 3992.0 ESM2M 3992.1 CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 3992.1 ESM2G 3925.0 CMIP3: cm2_0, cm2_1 3992.1

ocean volume

CMIP6: CM4 1.33511E+18 m3 ESM4 1.33480E+18 m3 ESM2M 1.325363E+18 m3 CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 1.325363E+18 m3 ESM2G 1.33291E+18 m3 CMIP3: cm2_0, cm2_1 1.325363E+18 m3

native horizontal resolution

CMIP6: CM4 1440 (lon) x 1080 (lat)
ESM4 720 (lon) x 576 (lat) ESM2M 360 (lon) x 200 (lat) CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 360 (lon) x 200 (lat) ESM2G 360 (lon) x 210 (lat) CMIP3: cm2_0, cm2_1 360 (lon) x 200 (lat)

native vertical resolution

CMIP6: CM4+ESM4 75 hybrid layers (z and rho2000) ESM2M 50 z vertical levels CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 50 z* vertical levels ESM2G 59 rho2000 layers + 4 z-like layers in upper boundary (rho2000 = potential density referenced to 2000dbar) CMIP3: cm2_0, cm2_1 50 z-vertical levels

vertical diffusivity scheme

CMIP6: CM4+ESM4 shear mixing Jackson et al., 2008 + tide mixing Melet et al., 2013 + constant background diffusivity 1.5e-5 m-2 s-1 >30n/S, tapering to 2e-6 m-2 s-1 at equator ESM2M shear mixing Large et al., 1994 + tide mixing Simmons et al., 2004 + constant background diffusivity 1.5e-5 m-2 s-1 >30n/S, tapering to 1e-5 m-2 s-1 at equator CMIP5: CM2p1, CM3, HIRAM-C180, HIRAM-C360 shear mixing Large et al., 1994 + tide mixing Simmons et al., 2004 + constant background diffusivity 3e-5 m-2 s-1 >30n/S, tapering to 1.5e-5 m-2 s-1 at equator with vertical Bryan and Lewis, 1979 profile ESM2M shear mixing Large et al., 1994 + tide mixing Simmons et al., 2004 + constant background diffusivity 1.5e-5 m-2 s-1 >30n/S, tapering to 1e-5 m-2 s-1 at equator ESM2G shear mixing Jackson et al., 2008 + tide mixing Simmons et al., 2004 + bottom boundary layer Legg and Huijts, 2006 + constant background diffusivity 2e-5 m-2 s-1 >30N/S, tapering to 2e-6 m-2 s-1 at equator CMIP3: cm2_0, cm2_1 shear mixing Large et al., 1994 + tide mixing Simmons et al., 2004 + constant background diffusivity 3e-5 m-2 s-1 >30N/S, tapering to 1.5e-5 m-2 s-1 at equator with vertical Bryan and Lewis, 1979 profile

boundary-layer (mld) scheme

CMIP6: CM4+ESM4 Reichl and Hallberg, 2018 energy-based boundary layer ESM2M KPP diffusivity Large et al., 1994 CMIP5: CM2p1, CM3, ESM2M, HIRAM-C180, HIRAM-C360 KPP diffusivity Large et al., 1994 ESM2G bulk mixed layer Hallberg, 2003 CMIP3: cm2_0, cm2_1 KPP diffusivity Large et al., 1994

initialization observed climatology:

CMIP6: CM4+ESM4 WOA2013 ESM2M WOA2005 CMIP5: CM2p1, CM3, HIRAM-C180, HIRAM-C360 various steps starting from WOA1998 ESM2M WOA2005 ESM2G WOA2005 CMIP3: cm2_0, cm2_1 various steps starting from WOA1998

spinup length (years)

CMIP6: CM4 600 years ESM4 1000 years ESM2M 1000 years CMIP5: CM2.1 1000 years ESM2M 1000 years ESM2G 1000 years CMIP3: cm_2_0 300 years cm_2_1 300 years

forcing

anthropogenic aerosol forcing (@vnaik60 has these covered above) aerosol indirect effects (@vnaik60 has these covered above) volcanic forcing (@vnaik60 has these covered above)

ref for later

StephenGriffies commented 3 years ago

values for constant background diffusivity CMIP6 models CM4: 1.5e-5 m2/sec poleward of 30, tapering to 2e-6m2/sec at equator ESM4: 1.5e-5 m2/sec poleward of 30, tapering to 2e-6m2/sec at equator ESM2M: 1.5e-5 m2/sec poleward of 30, tapering to 1e-5m2/sec at equator CMIP5 models GFDL-CM2p1 = GFDL-CM3 =GFDL-HIRAM-C180=GFDL-HIRAM-C360: 3e-5 m2/sec poleward of 30, tapering to 1.5e-5m2/sec at equator with vertical Bryan+Lewis (1979) profile GFDL-ESM2M: 1.5e-5 m2/sec poleward of 30, tapering to 1e-5m2/sec at equator CMIP3: gfdl_cm2_0=gfdl_cm2_1=3e-5 m2/sec poleward of 30, tapering to 1.5e-5m2/sec at equator with vertical Bryan+Lewis (1979) profile

vertical diffusivity scheme for ESM2G: background diffusivity = 2e-5 m2/sec poleward of 30, tapering to 2e-6m2/sec at equator Simmons et al (2004) tide mixing scheme Jackson et al (2008) shear mixing Legg et al (2006) bottom boundary layer

mixed layer scheme for ESM2G bulk mixed layer (Hallberg 2003);

Correction for native vertical resolution ESM2G 59 rho2000 layers + 4 z-like layers in upper boundary (rho2000 = potential density referenced to 2000dbar)

Initialization of ESM2G based on WOA2005

Spin up length:

CMIP5: correction for CM2.1 = 1000 years ESM2G: 1000 years

durack1 commented 3 years ago

@StephenGriffies thanks for that, I think with the ocean model config we're almost done, I did have one point of clarification, is

boundary-layer (mld) scheme

CMIP6: CM4+ESM4 Reichl and Hallberg, 2018 energy-based boundary layer

Correct?

StephenGriffies commented 3 years ago

Yes. The paper is Reichl and Hallberg (2018) https://doi.org/10.1016/j.ocemod.2018.10.004 where they discuss an energy-based boundary layer scheme. I do not know how much detail you can provide, so just mention this point in case that is something for the table.

durack1 commented 3 years ago

@vnaik60 just circling around on the forcing aspects of these sims

As a backstory, in CMIP3/5 there were a couple of different volcanic/stratospheric sulphate aerosol optical depth datasets used, both the Sato et al., 1993 updated and variants, along with the Ammann et al., 2003 variants, and for Pinatubo, the Stenchikov et al., 1998 was an update used only in GFDL sims from what I can gather. Particularly for the early eruptions (1883/Krakatoa, 1886/Tarawera-1888/Bandai, 1902/Santa Maria, 1930/Quizapu) the Ammann AOD was higher, leading to far stronger model responses across the ensemble archives (FYI Driscoll et al., 2012 documents this well for CMIP5).

Would it be fair to say the below:

CMIP6 GFDL-CM4, GFDL-ESM4: 'anthropogenic aerosol forcing' - emission-driven based on input4MIPs, CM4 has simplified chemistry 'volcanic forcing' - prescribed aerosol optical properties based on input4MIPs ETH Zürich (ETHZ), 2017 'aerosol indirect effects' - yes, based on bulk mass concentration

CMIP5 GFDL-CM3: 'anthropogenic aerosol forcing' - emission-driven based on Lamarque et al.,2010, full chemistry 'volcanic forcing' - prescribed aerosol optical properties Sato et al., 1993 updated and Stenchikov et al., 1998 'aerosol indirect effects' - yes, based on bulk mass concentration GFDL-ESM2M, ESM2G: 'anthropogenic aerosol forcing' - prescribed aerosol concentration 'volcanic forcing' - prescribed aerosol optical properties Sato et al., 1993 updated and Stenchikov et al., 1998 'aerosol indirect effects' - prescribed

CMIP3 gfdl_cm2_0, gfdl_cm_1: 'anthropogenic aerosol forcing' - prescribe aerosol concentration 'volcanic forcing' - prescribed aerosol optical properties Sato et al., 1993 updated and Stenchikov et al., 1998 'aerosol indirect effects' - prescribed

vnaik60 commented 3 years ago

Yes, absolutely correct!

durack1 commented 3 years ago

Yes, absolutely correct!

Excellent, I think this is now ready for tabulating.

As an FYI for me, for the piControl sims (and CMIP6), did you guys use the SAOD monthly (monC) or annual (yrC) climatologies? I suppose in CMIP3/5 no SAOD dataset was used, or was there a background value used? Was this also routine for the other forcings?