Open seanxuu opened 9 months ago
I try to train Llama-2-7b-longlora-100k-ft with my own dataset which is sampled from your LongAlpaca-12k.json data. But the value of loss looks same.
python supervised-fine-tune.py \
--model_name_or_path /models/Llama-2-7b-longlora-100k-ft \
--bf16 True \
--output_dir LongLoRA/save/7b-100k-ft-origdata-mydata \
--model_max_length 100000 \
--use_flash_attn True \
--data_path LongLoRA/pdf2txt/output/manual_data.json \
--low_rank_training True \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 98 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0.0 \
--warmup_steps 20 \
--lr_scheduler_type "constant_with_warmup" \
--logging_steps 1 \
--deepspeed "ds_configs/stage2.json" \
--tf32 True
when I use the LongAlpaca-12k dataset to supervised fintune the LongAlpaca-7B model, the value of loss is too unstable. my command is :
the value of loss looks like below: