dvmazur / mixtral-offloading

Run Mixtral-8x7B models in Colab or consumer desktops
MIT License
2.29k stars 227 forks source link

Is it possible to finetune this on a custom dataset? #17

Open asmith26 opened 10 months ago

asmith26 commented 10 months ago

Hi there,

Just wondering is it possible to fine tune this model on a custom dataset? If so, are there any examples/code?

Many thanks for any help, and for this amazing model, I'm finding it works really well!

dvmazur commented 10 months ago

Hi!

Full fine-tuning won't work as the model is quantized, but you could try fine-tuning the model using various PEFT techniques which work with quantized base models. Check out QLoRA for example.

Hope this is helpful.

complete-dope commented 10 months ago

@dvmazur any link where this has been implemented or if you have done something similar please share that would be helpful !!

@asmith26 Did you found any method ?

nmarafo commented 10 months ago

The structure of the loaded model is:

  (model): MixtralModel(
    (embed_tokens): Embedding(32000, 4096)
    (layers): ModuleList(
      (0-31): 32 x MixtralDecoderLayer(
        (self_attn): MixtralAttention(
          (q_proj): HQQLinearTritonSavable()
          (k_proj): HQQLinearTritonSavable()
          (v_proj): HQQLinearTritonSavable()
          (o_proj): HQQLinearTritonSavable()
          (rotary_emb): MixtralRotaryEmbedding()
        )
        (block_sparse_moe): SparseMoeWrapper(
          (gate): Linear(in_features=4096, out_features=8, bias=False)
        )
        (input_layernorm): MixtralRMSNorm()
        (post_attention_layernorm): MixtralRMSNorm()
      )
    )
    (norm): MixtralRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)

When I try to train with

from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, config)

I get that peft is not compatible with HQQLinearTritonSavable, evidently: ValueError Traceback (most recent call last) in <cell line: 12>() 10 ) 11 ---> 12 model = get_peft_model(model, config) 13 print_trainable_parameters(model)

7 frames /usr/local/lib/python3.10/dist-packages/peft/tuners/lora/model.py in _create_new_module(lora_config, adapter_name, target, **kwargs) 255 if new_module is None: 256 # no module could be matched --> 257 raise ValueError( 258 f"Target module {target} is not supported. Currently, only the following modules are supported: " 259 "torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d, transformers.pytorch_utils.Conv1D."

ValueError: Target module HQQLinearTritonSavable() is not supported. Currently, only the following modules are supported: torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d, transformers.pytorch_utils.Conv1D.

dvmazur commented 10 months ago

Hey, @nmarafo and @complete-dope!

It looks like using huggingface's peft for fine-tuning the offloaded model is a bit tricky (due to custom layers mostly), but I haven't looked into it myself.

A LoRA fine-tuning setup similar to the original paper can be hacked together quite simply:

# imports

class LoRALayer(nn.Module):
    def __init__(self, module: nn.Linear, rank: int):
        super().__init__()
        self.module = module
        self.adapter_A = nn.Parameter(torch.empty(module.in_features, rank, device=module.weight.device))
        nn.init.kaiming_uniform_(self.adapter_A, a=5 ** 0.5)
        self.adapter_B = nn.Parameter(torch.zeros(rank, module.out_features, device=module.weight.device))

    def forward(self, input):
        bottleneck = F.linear(input, self.adapter_A.T)
        residual = F.linear(bottleneck, self.adapter_B.T)
        return self.module(input) + residual

def custom_get_peft_model(model, rank):
    for _, module in model.named_modules():
        if not isinstance(module, MixtralAttention):
            continue
        module.q_proj = LoRALayer(module.q_proj, rank)
        # TODO: {k, v, o}_proj
    return model

Note that this example only applies LoRA to attention parameters. Doing the same for the expert layers is tricker as it might break the ExpertCache (haven't looked into that myself yet).

nmarafo commented 10 months ago

Thank you very much for the answer.

Sorry for my inexperience, I'm trying to implement it like this:

import torch.nn as nn
from transformers.models.mixtral.modeling_mixtral import MixtralAttention

class LoRALayer(nn.Module):
    def __init__(self, module: nn.Linear, rank: int):
        super().__init__()
        self.module = module
        self.adapter_A = nn.Parameter(torch.empty(module.in_features, rank, device=module.weight.device))
        nn.init.kaiming_uniform_(self.adapter_A, a=5 ** 0.5)
        self.adapter_B = nn.Parameter(torch.zeros(rank, module.out_features, device=module.weight.device))

    def forward(self, input):
        bottleneck = F.linear(input, self.adapter_A.T)
        residual = F.linear(bottleneck, self.adapter_B.T)
        return self.module(input) + residual

def custom_get_peft_model(model, rank):
    for _, module in model.named_modules():
        if not isinstance(module, MixtralAttention):
            continue
        module.q_proj = LoRALayer(module.q_proj, rank)
        # TODO: {k, v, o}_proj
    return model

model = custom_get_peft_model(model, rank=8)

and I get this error:

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in __getattr__(self, name)
   1693             if name in modules:
   1694                 return modules[name]
-> 1695         raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
   1696 
   1697     def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None:

AttributeError: 'HQQLinearTritonSavable' object has no attribute 'in_features'
nmarafo commented 10 months ago

Perhaps is solved with this:


import torch.nn as nn
from transformers.models.mixtral.modeling_mixtral import MixtralAttention
from src.custom_layers import HQQLinearTritonSavable

class LoRALayer(nn.Module):
    def __init__(self, module: HQQLinearTritonSavable, rank: int):
        super().__init__()
        self.module = module
        in_features = module.meta['shape'][1]
        out_features = module.meta['shape'][0]
        self.adapter_A = nn.Parameter(torch.empty(in_features, rank, device=module.W_q.device))
        nn.init.kaiming_uniform_(self.adapter_A, a=5 ** 0.5)
        self.adapter_B = nn.Parameter(torch.zeros(rank, out_features, device=module.W_q.device))

    def forward(self, input):
        bottleneck = F.linear(input, self.adapter_A.T)
        residual = F.linear(bottleneck, self.adapter_B.T)
        return self.module(input) + residual

def custom_get_peft_model(model, rank):
    for _, module in model.named_modules():
        if not isinstance(module, MixtralAttention):
            continue
        module.q_proj = LoRALayer(module.q_proj, rank)
        # TODO: {k, v, o}_proj
    return model
model = custom_get_peft_model(model, rank=8)
´´´
dvmazur commented 10 months ago

I'm not sure whether (module.meta['shape'][1], module.meta['shape'][0]) is the correct shape. Maybe you should try pulling the correct shape from the original model's config.

from transformers import AutoConfig

config = AutoConfig.from_pretrained("mistralai/Mixtral-8x7B-v0.1")

head_dim = config.hidden_size // config.num_attention_heads
#              (in_features, out_features)
q_proj_shape = (config.hidden_size, config.num_attention_heads * head_dim)
k_proj_shape = (config.hidden_size, config.num_key_value_heads * head_dim)
v_proj_shape = (config.hidden_size, config.num_key_value_heads * head_dim)
o_proj_shape = (config.num_attention_heads * head_dim, config.hidden_size)

Haven't checked whether these shapes are correct, but they must be.

If this snippet doesn't work, you could try reconstructing the original shapes from here.

soreille commented 5 months ago

Please have you found any solution