dyh / unbox_yolov5_deepsort_counting

yolov5 deepsort 行人 车辆 跟踪 检测 计数
953 stars 243 forks source link

运行无报错,但是没有检测框和数量变化,求教是什么问题? #44

Open zjh-acc opened 1 year ago

zjh-acc commented 1 year ago

image

LSJ5106 commented 1 year ago

我也是,请问是什么问题?

jaybryant1 commented 1 year ago

我也是,求教啊......

Bob-jpg commented 2 months ago

import torch import numpy as np import cv2 from models.experimental import attempt_load from utils.datasets import letterbox from utils.general import non_max_suppression, scale_coords from utils.torch_utils import select_device

from ultralytics import YOLO

class Detector:

def __init__(self):
    self.threshold=0.3

    self.weights = r'/yolov5m.pt'

    model = YOLO(
        r'/yolov8s.pt')  # 你可以选择不同的模型,例如 'yolov8s.pt', 'yolov8m.pt', 'yolov8l.pt', 'yolov8x.pt'

    self.m = model
    self.names = model.names

def detect(self, im):

    results = self.m(im)  # Perform detection

    boxes = []
    for result in results:
        detections = result.boxes  # 获取检测框信息
        for det in detections:
            # 获取检测框的坐标、置信度和类别
            x1, y1, x2, y2 = det.xyxy[0].int().tolist()  # 转换为整数坐标
            conf = det.conf[0].item()  # 获取置信度
            cls = int(det.cls[0].item())  # 获取类别索引

            if conf < self.threshold:
                continue

            label = self.names[cls]
            if label not in ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck']:
                continue

            boxes.append((int(x1), int(y1), int(x2), int(y2), label, conf))

    return boxes

detector检测脚本有问题,替换为yolov8ba