e-mission / e-mission-docs

Repository for docs and issues. If you need help, please file an issue here. Public conversations are better for open source projects than private email.
https://e-mission.readthedocs.io/en/latest
BSD 3-Clause "New" or "Revised" License
15 stars 34 forks source link

Investigate and fix (the few) errors in the first week of the new pipeline + deploy new autocheck pipeline #250

Open shankari opened 8 years ago

shankari commented 8 years ago

First, ensure that all production deployments have been addressed

Not yet merged

Unmerged change is around creating pipeline state even if it doesn't exist.

shankari commented 8 years ago

Errors in the logs. There is only one error.

Found error single positional indexer is out-of-bounds while processing trip Entry({u'dat
a': {u'distance': 110.86757169217913, u'end_place': ObjectId('57f8742688f66319fbcf2717'),
 u'start_loc': {u'type': u'Point', u'coordinates': [-122.2685346, 37.8722395]}, u'end_ts'
: 1475890565.191, u'start_ts': 1475890411.122, u'start_fmt_time': u'2016-10-07T18:33:31.1
22000-07:00', u'end_loc': {u'type': u'Point', u'coordinates': [-122.2686232, 37.8712449]}
, u'source': u'DwellSegmentationTimeFilter', u'start_place': ObjectId('57f852b188f6631614
0f13d4'), u'end_fmt_time': u'2016-10-07T18:36:05.191000-07:00', u'end_local_dt': {u'hour'
: 18, u'month': 10, u'second': 5, u'weekday': 4, u'year': 2016, u'timezone': u'America/Lo
s_Angeles', u'day': 7, u'minute': 36}, u'duration': 154.06900000572205, u'start_local_dt'
: {u'hour': 18, u'month': 10, u'second': 31, u'weekday': 4, u'year': 2016, u'timezone': u
'America/Los_Angeles', u'day': 7, u'minute': 33}}, u'_id': ObjectId('57f8742688f66319fbcf
2716'), u'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151'), u'metadata': {u'write_f
mt_time': u'2016-10-07T21:20:54.879732-07:00', u'write_ts': 1475900454.879732, u'time_zon
e': u'America/Los_Angeles', u'platform': u'server', u'write_local_dt': {u'hour': 21, u'mo
nth': 10, u'second': 54, u'weekday': 4, u'year': 2016, u'timezone': u'America/Los_Angeles
', u'day': 7, u'minute': 20}, u'key': u'segmentation/raw_trip'}})
Traceback (most recent call last):
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resam
ple.py", line 101, in save_cleaned_segments_for_timeline
    filtered_trip = get_filtered_trip(ts, trip)
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resample.py", line 167, in get_filtered_trip
    (filtered_section_entry, point_list) = get_filtered_section(filtered_trip_entry, section)
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resample.py", line 270, in get_filtered_section
    with_speeds_df = get_filtered_points(section, filtered_section_data)
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resample.py", line 396, in get_filtered_points
    resampled_loc_df = resample(filtered_loc_df, interval=30)
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resample.py", line 758, in resample
    tz_new = [_get_timezone(ts, tz_ranges_df) for ts in ts_new]
  File "/mnt/e-mission/e-mission-server/emission/analysis/intake/cleaning/clean_and_resample.py", line 776, in _get_timezone
    return sel_entry.timezone.iloc[0]
  File "/home/ubuntu/anaconda/lib/python2.7/site-packages/pandas/core/indexing.py", line 1286, in __getitem__
    return self._getitem_axis(key, axis=0)
  File "/home/ubuntu/anaconda/lib/python2.7/site-packages/pandas/core/indexing.py", line 1573, in _getitem_axis
    self._is_valid_integer(key, axis)
  File "/home/ubuntu/anaconda/lib/python2.7/site-packages/pandas/core/indexing.py", line 1487, in _is_valid_integer
    raise IndexError("single positional indexer is out-of-bounds")
IndexError: single positional indexer is out-of-bounds
shankari commented 8 years ago
shankari commented 8 years ago

Two issues with the new pipeline

Error in task_state

2016-10-11 19:14:41,691:DEBUG:140474316433216:after running mapping function <function give_points at 0x7fc298e78b90> for task f8459f4a-b5de-47db-8ce1-cb1bded53099, new_state = None
2016-10-11 19:14:41,696:ERROR:140474316433216:While processing task f8459f4a-b5de-47db-8ce1-cb1bded53099, found error 'task_state'

This is because there is no task_state for the user entry right after the switch

Awarding points

There were no points awarded, ever. This is because if we had no entry, we returned None, if we got None, we read data from the current timestamp, and return None. But then on the next run, we read None and again tried to read data from the current timestamp. This means that we never would read data and establish the first set of state.

2016-10-11 21:08:20,021:DEBUG:140498152335168:Metrics response: {'last_ts_processed': None, 'result': [[]]}
2016-10-11 21:08:20,022:DEBUG:140498152335168:Returning None
2016-10-11 21:08:20,022:DEBUG:140498152335168:after running mapping function <function give_points at 0x7fc825a25c08> for task f8459f4a-b5de-47db-8ce1-cb1bded53099, new_state = None
....
2016-10-11 22:00:36,357:DEBUG:140158525577024:Metrics response: {'last_ts_processed': Non
e, 'result': [[]]}
2016-10-11 22:00:36,358:DEBUG:140158525577024:Returning None
2016-10-11 22:00:36,358:DEBUG:140158525577024:after running mapping function <function gi
ve_points at 0x7f79124d4c08> for task f8459f4a-b5de-47db-8ce1-cb1bded53099, new_state = N
one
shankari commented 8 years ago

Working

2016-10-11 15:40:48,487:DEBUG:140735236476928:------------------------------2016-10-07T18:36:05.191000-07:00------------------------------
2016-10-11 15:40:48,492:DEBUG:140735236476928:last5MinsDistances = [  93.67122832   97.59160352  110.86757169   67.63591944   61.4205331
   21.06217581   27.26482303   29.0666801    29.0666801    13.72040883] with length 10
2016-10-11 15:40:48,496:DEBUG:140735236476928:last10PointsDistances = [  97.59160352  110.86757169   67.63591944   61.4205331    21.06217581
   27.26482303   29.0666801    29.0666801    13.72040883    0.        ] with length 10, shape (10,)
2016-10-11 15:40:48,499:DEBUG:140735236476928:len(last10PointsDistances) = 10, len(last5MinsDistances) = 10
2016-10-11 15:40:48,499:DEBUG:140735236476928:last5MinsTimes.max() = 184.088999987, time_threshold = 300

2016-10-11 15:40:48,502:DEBUG:140735236476928:In range 1475890555.27 -> 1475890565.19 found no transitions

2016-10-11 15:40:48,504:DEBUG:140735236476928:Found 1 motion_activity entries in range 1475890555.27 -> 1475890565.19
2016-10-11 15:40:48,504:DEBUG:140735236476928:sample activities are [{u'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532'), u'_id': ObjectId('57fd493bf6858f48fbffea17'), u'data': {u'type': 4, u'confidence': 37, u'local_dt': {u'hour': 18, u'month': 10, u'second': 2, u'weekday': 4, u'year': 2016, u'timezone': u'America/Los_Angeles', u'day': 7, u'minute': 36}, u'ts': 1475890562.528, u'fmt_time': u'2016-10-07T18:36:02.528000-07:00'}, u'metadata': {u'write_fmt_time': u'2016-10-07T18:36:02.528000-07:00', u'write_ts': 1475890562.528, u'time_zone': u'America/Los_Angeles', u'platform': u'android', u'write_local_dt': {u'hour': 18, u'month': 10, u'second': 2, u'weekday': 4, u'year': 2016, u'timezone': u'America/Los_Angeles', u'day': 7, u'minute': 36}, u'key': u'background/motion_activity', u'read_ts': 0, u'type': u'sensor-data'}}]
2016-10-11 15:40:48,505:DEBUG:140735236476928:prev_point.ts = 1475890555.27, curr_point.ts = 1475890565.19, time gap = 9.92100000381 (vs 300), distance_gap = 13.7204088326 (vs 100), speed_gap = 1.38296631664 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,505:DEBUG:140735236476928:Too few points to make a decision, continuing

2016-10-11 15:40:48,677:DEBUG:140735236476928:------------------------------2016-10-07T18:38:02-07:00------------------------------
2016-10-11 15:40:48,684:DEBUG:140735236476928:last5MinsDistances = [ 77.69906784  86.01345884  42.94160414  47.31793066  45.32683329
  51.93555911  48.86130476  48.86130476  37.26272483  24.85742633
  37.89416763  28.2278195   24.94993399  16.60382664  22.57186772
  22.814868    25.14761009  16.60382664] with length 18
2016-10-11 15:40:48,688:DEBUG:140735236476928:last10PointsDistances = [ 24.85742633  37.89416763  28.2278195   24.94993399  16.60382664
  22.57186772  22.814868    25.14761009  16.60382664   0.        ] with length 10, shape (10,)
2016-10-11 15:40:48,693:DEBUG:140735236476928:len(last10PointsDistances) = 10, len(last5MinsDistances) = 18
2016-10-11 15:40:48,694:DEBUG:140735236476928:last5MinsTimes.max() = 296.0, time_threshold = 300
2016-10-11 15:40:48,699:DEBUG:140735236476928:prev_point.ts = 1475890675.9, curr_point.ts = 1475890682.0, time gap = 6.09599995613 (vs 300), distance_gap = 16.6038266448 (vs 100), speed_gap = 2.72372486291 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,701:DEBUG:140735236476928:Appending last_trip_end_point AttrDict({u'local_dt_hour': 18, u'local_dt_timezone': u'America/Los_Angeles', u'local_dt_second': 55, u'local_dt_year': 2016, u'local_dt_month': 10, u'local_dt_weekday': 4, u'elapsedRealtimeNanos': 533542207000000, u'loc': {u'type': u'Point', u'coordinates': [-122.2687119, 37.8711433]}, 'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532'), u'altitude': 0.0, u'ts': 1475890555.27, u'latitude': 37.8711433, u'sensed_speed': 0.0, u'accuracy': 23.359000000000002, u'fmt_time': u'2016-10-07T18:35:55.270000-07:00', u'local_dt_minute': 35, 'metadata_write_ts': 1475890555.45, u'longitude': -122.2687119, u'filter': u'time', '_id': ObjectId('57fd493bf6858f48fbffea16'), u'heading': 0, u'local_dt_day': 7}) with index 2776 
2016-10-11 15:40:48,701:INFO:140735236476928:Found trip end at 2016-10-07T18:35:55.270000-07:00

2016-10-11 15:40:51,576:DEBUG:140735236476928:Inserting entry Entry({'data': Rawtrip({'end_place': ObjectId('57fd6a73f6858f4ee61cc5c3')
'start_ts': 1475890381.102
'start_place': ObjectId('57fd6a73f6858f4ee61cc5c1')
'duration': 174.16799998283386
'distance': 100.35387353364963
'start_loc': {"coordinates": [-122.2691549 37.8719753] "type": "Point"}
'end_ts': 1475890555.27
'start_fmt_time': u'2016-10-07T18:33:01.102000-07:00'
'end_loc': {"coordinates": [-122.2687119 37.8711433] "type": "Point"}
'source': 'DwellSegmentationTimeFilter'
'end_fmt_time': u'2016-10-07T18:35:55.270000-07:00'
'_id': ObjectId('57fd6a73f6858f4ee61cc5c2')
'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532')
'key': 'segmentation/raw_trip'})}) into timeseries

2016-10-11 15:40:52,804:DEBUG:140735236476928:Considering trip 57fd6a73f6858f4ee61cc5c2: 2016-10-07T18:33:01.102000-07:00 -> 2016-10-07T18:35:55.270000-07:00 

2016-10-11 15:40:54,426:DEBUG:140735236476928:Filtering trip Entry({u'data': {u'distance': 100.35387353364963
u'end_place': ObjectId('57fd6a73f6858f4ee61cc5c3')
u'end_ts': 1475890555.27
u'start_ts': 1475890381.102
u'start_fmt_time': u'2016-10-07T18:33:01.102000-07:00'
u'source': u'DwellSegmentationTimeFilter'
u'start_place': ObjectId('57fd6a73f6858f4ee61cc5c1')
u'end_fmt_time': u'2016-10-07T18:35:55.270000-07:00'
u'duration': 174.16799998283386
u'_id': ObjectId('57fd6a73f6858f4ee61cc5c2')
u'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532')
u'key': u'segmentation/raw_trip'}})

2016-10-11 15:40:54,459:DEBUG:140735236476928:keys = (segmentation/raw_stop, segmentation/raw_section), len(places) = 0, len(trips) = 1

2016-10-11 15:40:54,464:DEBUG:140735236476928:curr_query = {'$or': [{'metadata.key': 'background/filtered_location'}], 'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532'), 'data.ts': {'$lte': 1475890555.27, '$gte': 1475890381.102}}, sort_key = data.ts

2016-10-11 15:40:54,468:DEBUG:140735236476928:deleting 5 points from section points
2016-10-11 15:40:54,473:DEBUG:140735236476928:Found 10 results
2016-10-11 15:40:54,479:DEBUG:140735236476928:After filtering, rows went from 10 -> 5, cols from 22 -> 21
2016-10-11 15:40:54,556:DEBUG:140735236476928:tz_ranges = [{'timezone': u'America/Los_Angeles', 'end_ts': 1475890470.5999999, 'start_ts': 1475890375.4049511}]
2016-10-11 15:40:54,559:DEBUG:140735236476928:tz_ranges_df =          end_ts      start_ts             timezone
0  1.475890e+09  1.475890e+09  America/Los_Angeles
2016-10-11 15:40:54,560:DEBUG:140735236476928:After resampling, using 5 points from 1475890375.4 -> 1475890470.6

Not working

2016-10-11 22:02:58,676:DEBUG:140158525577024:Considering trip 57f8742688f66319fbcf2716: 2016-10-07T18:33:31.122000-07:00 -> 2016-10-07T18:36:05.191000-07:00 

2016-10-11 22:02:58
780:DEBUG:140158525577024:Filtering trip Entry({u'data': {u'distance' : 110.86757169217913
 u'end_place': ObjectId('57f8742688f66319fbcf2717')
 u'start_loc': { u'type': u'Point' u'coordinates': [-122.2685346 37.8722395]}
 u'end_ts': 1475890565.191 
 u'start_ts': 1475890411.122
 u'start_fmt_time': u'2016-10-07T18:33:31.122000-07:00'
 u' end_loc': {u'type': u'Point' u'coordinates': [-122.2686232 37.8712449]}
 u'source': u'D wellSegmentationTimeFilter'
 u'start_place': ObjectId('57f852b188f66316140f13d4')
 u'end_ fmt_time': u'2016-10-07T18:36:05.191000-07:00'
 u'_id': ObjectId('57f8742688f66319fbcf2716')
 u'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151')
 u'key': u'segmentation/raw_trip'}})

2016-10-11 22:02:59,396:DEBUG:140158525577024:deleting 6 points from section points
2016-10-11 22:02:59,403:DEBUG:140158525577024:Found 9 results

2016-10-11 22:02:59,412:DEBUG:140158525577024:After filtering, rows went from 9 -> 3, cols from 22 -> 21

2016-10-11 22:02:59,578:DEBUG:140158525577024:Resampling data of size 4
2016-10-11 22:02:59,586:DEBUG:140158525577024:Resampling entry list                      
      fmt_time            ts   longitude   latitude
0  2016-10-07T18:36:01.102000-07:00  1.475891e+09 -122.269155  37.871975
1  2016-10-07T18:33:31.122000-07:00  1.475890e+09 -122.268535  37.872239
2         2016-10-07T18:34:01-07:00  1.475890e+09 -122.268510  37.871847
3  2016-10-07T18:34:30.600000-07:00  1.475890e+09 -122.268100  37.871612 of size 4
2016-10-11 22:02:59,588:DEBUG:140158525577024:tz_ranges = [{'timezone': u'America/Los_Ang
eles', 'end_
2016-10-11 22:02:59,413:DEBUG:140158525577024:Found first section, may need to extrapolate start point
2016-10-11 22:02:59,443:DEBUG:140158525577024:Adding distance 61.8670596282 to original 88.2432234135 to extend section start from [-122.2685346, 37.8722395] to [-122.2691549, 37.8719753]
2016-10-11 22:02:59,446:DEBUG:140158525577024:Much extrapolation! new_start_ts 1475890368.86 < prev_enter_ts 1475890381.1
2016-10-11 22:02:59,446:DEBUG:140158525577024:changed new_start_ts to 1475890561.1
2016-10-11 22:02:59,448:DEBUG:140158525577024:After subtracting time 42.2597604891 from original 59.4779999256 to cover additional distance 61.8670596282 at speed 1.46397090074, new_start_ts = 1475890561.1

So basically, we tried to extrapolate to 18:32, but that was too early so we dialed it back to 18:36. But that is after the current first point (start of the raw trip) was at 18:33:31.

In [2]: arrow.get(1475890368.86).to("America/Los_Angeles")
Out[2]: <Arrow [2016-10-07T18:32:48.860000-07:00]>

In [3]: arrow.get(1475890561.1).to("America/Los_Angeles")
Out[3]: <Arrow [2016-10-07T18:36:01.100000-07:00]>

In [4]: arrow.get(1475890411.122).to("America/Los_Angeles")
Out[4]: <Arrow [2016-10-07T18:33:31.122000-07:00]>

Let us see the place before this.

2016-10-11 22:02:58
723:DEBUG:140158525577024:retrieved object Entry({u'data': 
{u'enter_fmt_time': u'2016-10-07T18:33:01.102000-07:00'
 u'exit_fmt_time': u'2016-10-07T18:33:31.122000-07:00'
 u'ending_trip': ObjectId('57f852b188f66316140f13d3')
 u'starting_trip': ObjectId('57f8742688f66319fbcf2716')
 u'source': u'DwellSegmentationTimeFilter'
 u'location': {u'type': u'Point' u'coordinates': [-122.2691549 37.8719753]}
 u'enter_ts': 1475890381.102
 u'duration': 30.019999980926514
 u'exit_ts': 1475890411.122}
 u'_id': ObjectId('57f852b188f66316140f13d4')
 u'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151')
 u'key': u'segmentation/raw_place'}}) and added to id_map

So the trip duration was not 0, but it was very short (30 secs). Why did we end up setting up a trip that was so short? While attempting to reproduce locally, we had a continuous raw trip from 18:33:01 to 18:35:55.

Back to working

2016-10-11 15:40:48,335:DEBUG:140735236476928:------------------------------2016-10-07T18:33:01.102000-07:00------------------------------
2016-10-11 15:40:48,336:DEBUG:140735236476928:Setting new trip start point AttrDict({u'local_dt_hour': 18, u'local_dt_timezone': u'America/Los_Angeles', u'local_dt_second': 1, u'local_dt_year': 2016, u'local_dt_month': 10, u'local_dt_weekday': 4, u'elapsedRealtimeNanos': 533368039000000, u'loc': {u'type': u'Point', u'coordinates': [-122.2691549, 37.8719753]}, 'user_id': UUID('f8e005f9-22a8-4ec0-8107-ce6f34d5c532'), u'altitude': 0.0, u'ts': 1475890381.102, u'latitude': 37.8719753, u'sensed_speed': 0.0, u'accuracy': 19.762, u'fmt_time': u'2016-10-07T18:33:01.102000-07:00', u'local_dt_minute': 33, 'metadata_write_ts': 1475890381.305, 'idx': 2767, u'longitude': -122.2691549, u'filter': u'time', '_id': ObjectId('57fd493bf6858f48fbffe9fa'), u'heading': 0, u'local_dt_day': 7}) with idx 2767
2016-10-11 15:40:48,341:DEBUG:140735236476928:------------------------------2016-10-07T18:33:06-07:00------------------------------
2016-10-11 15:40:48,350:DEBUG:140735236476928:prev_point.ts = 1475890381.1, curr_point.ts = 1475890386.0, time gap = 4.89800000191 (vs 300), distance_gap = 4.1789205142 (vs 100), speed_gap = 0.853189161406 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,351:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,351:DEBUG:140735236476928:------------------------------2016-10-07T18:33:31.122000-07:00------------------------------
2016-10-11 15:40:48,374:DEBUG:140735236476928:prev_point.ts = 1475890386.0, curr_point.ts = 1475890411.12, time gap = 25.121999979 (vs 300), distance_gap = 60.6238559933 (vs 100), speed_gap = 2.41317793344 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,375:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,375:DEBUG:140735236476928:------------------------------2016-10-07T18:34:01-07:00------------------------------
2016-10-11 15:40:48,387:DEBUG:140735236476928:prev_point.ts = 1475890411.12, curr_point.ts = 1475890441.0, time gap = 29.878000021 (vs 300), distance_gap = 43.740522603 (vs 100), speed_gap = 1.46397090074 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,387:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,388:DEBUG:140735236476928:------------------------------2016-10-07T18:34:30.600000-07:00------------------------------
2016-10-11 15:40:48,401:DEBUG:140735236476928:prev_point.ts = 1475890441.0, curr_point.ts = 1475890470.6, time gap = 29.5999999046 (vs 300), distance_gap = 44.5027008105 (vs 100), speed_gap = 1.50346962682 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,401:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,402:DEBUG:140735236476928:------------------------------2016-10-07T18:34:49.825000-07:00------------------------------
2016-10-11 15:40:48,416:DEBUG:140735236476928:prev_point.ts = 1475890470.6, curr_point.ts = 1475890489.83, time gap = 19.2250001431 (vs 300), distance_gap = 80.7918261915 (vs 100), speed_gap = 4.2024356614 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,416:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,417:DEBUG:140735236476928:------------------------------2016-10-07T18:35:02-07:00------------------------------
2016-10-11 15:40:48,431:DEBUG:140735236476928:prev_point.ts = 1475890489.83, curr_point.ts = 1475890502.0, time gap = 12.1749999523 (vs 300), distance_gap = 7.2072111651 (vs 100), speed_gap = 0.591968065161 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,431:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,432:DEBUG:140735236476928:------------------------------2016-10-07T18:35:19.871000-07:00------------------------------
2016-10-11 15:40:48,447:DEBUG:140735236476928:prev_point.ts = 1475890502.0, curr_point.ts = 1475890519.87, time gap = 17.8710000515 (vs 300), distance_gap = 19.5725854655 (vs 100), speed_gap = 1.09521489615 (vs 0.333333333333) continuing trip
2016-10-11 15:40:48,447:DEBUG:140735236476928:Too few points to make a decision, continuing
2016-10-11 15:40:48,448:DEBUG:140735236476928:------------------------------2016-10-07T18:35:35.244000-07:00------------------------------
....

And because we only check to see if the place duration is zero, we don't compare the new point with the start of the raw trip.

        if raw_start_place.data.duration == 0:
            ...
        else:
            new_start_ts = raw_start_place.data.enter_ts + 3 * 60
shankari commented 8 years ago

It looks like we can do two fixes.

  1. Instead of assuming that the place duration is at least 5 mins, we can just set
new_start_ts = raw_start_place.data.enter_ts + raw_start_place.data.duration / 2

This will workaround the issue

  1. We should also investigate why the raw segmentation was different between the real run and the repo
shankari commented 8 years ago

First instance

2016-10-08T04:19:08.542150+00:00**********UUID ec0291bb-bee3-40c0-9dbd-a9fNo user defined
 overrides for ec0291bb-bee3-40c0-9dbd-a9fbc1db2d9b, early return

IndexError: single positional indexer is out-of-bounds

No user defined overrides for 365fc61a-033c-49ec-8f47-6fc5fbc36151, early return
No user defined overrides for 365fc61a-033c-49ec-8f47-6fc5fbc36151, early return
No user defined overrides for 365fc61a-033c-49ec-8f47-6fc5fbc36151, early return
bc1db2d9b: storing views to cache**********
2016-10-08T04:19:29.603463+00:00**********UUID 9adb6994-2be2-4b7d-a122-db1fb6b65b62: moving to long term**********

From the launcher

UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151'), UUID('2d60d46f-a9b6-4d4b-ad58-5449bd2da41b'), UUID('2f491eaf-bdb6-4746-9ccd-82f5bde935dc'), UUID('5f1b3054-4da2-4d69-ab68-1548dfbf04ee')]
2016-10-08 04:00:09,227:INFO:139756977829696:Created process <Process(Process-3, initial)> to process 2 list of size 80

From the process logs

Looking in the logs for process 2 for the appropriate day, we find that this was the first point, so it was the start of a trip. But why wasn't this merged with the previous partially completed trip.

2016-10-08 04:20:53,409:INFO:139756977829696:Last ts processed = None
2016-10-08 04:20:53,410:DEBUG:139756977829696:------------------------------2016-10-07T18:33:31.122000-07:00------------------------------
2016-10-08 04:20:53,410:DEBUG:139756977829696:Appending currPoint because the current start point is None
2016-10-08 04:20:53
410:DEBUG:139756977829696:Setting new trip start point AttrDict({
 u'loc': {u'type': u'Point' u'coordinates': [-122.2685346 37.8722395]}
 'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151')
 u'ts': 1475890411.122
 u'latitude': 37.8722395
 u'accuracy': 24.683
 u'fmt_time': u'2016-10-07T18:33:31.122000-07:00'
 u'longitude': -122.2685346
 u'filter': u'time'

We started looking at points from the last processed timestamp

2016-10-08 04:20:53,096:INFO:139756977829696:For stage PipelineStages.TRIP_SEGMENTATION, start_ts = 2016-10-08T01:33:11.660000
2016-10-08 04:20:53,098:DEBUG:139756977829696:curr_query = {'$or': [{'metadata.key': 'background/filtered_location'}], 'metadata.write_ts': {'$lte': 1475900448.097118, '$gte': 1475890391.66}, 'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151')}, sort_key = metadata.write_ts

which was 18:33:11.

In [5]: arrow.get(1475890391.66).to("America/Los_Angeles")
Out[5]: <Arrow [2016-10-07T18:33:11.660000-07:00]>

We have a 5 second fuzz factor, so the last processed point should have been 18:33:06. So we now have to work backwards and see why the last_processed_ts was set to it.

2016-10-11 15:40:48,335:DEBUG:140735236476928:------------------------------2016-10-07T18:33:01.102000-07:00------------------------------
2016-10-11 15:40:48,341:DEBUG:140735236476928:------------------------------2016-10-07T18:33:06-07:00------------------------------
2016-10-11 15:40:48,351:DEBUG:140735236476928:------------------------------2016-10-07T18:33:31.122000-07:00------------------------------
shankari commented 8 years ago

Launcher

Previous run was in process 1 logs

UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151'), UUID('9b49bcf4-9152-4851-bfca-4a51f16b8eb9'), UUID('9adb6994-2be2-4b7d-a122-db1fb6b65b62'), UUID('9be6059c-4034-406b-9df0-4ec22175361e'), UUID('d97d6bea-8e60-4629-965a-614f148a82e7'), UUID('ee787674-ec13-4e72-939a-bc72d41c4cb2'), UUID('7161343e-551e-4213-be75-3b82e1ce2448'), UUID('0ace713f-a070-4fe0-9794-87c67850a17c')]
2016-10-08 03:00:07,021:INFO:139868991977280:Created process <Process(Process-2, initial)> to process 1 list of size 80

From the logs

last_ts_processed is set to 18:33:06 + 5 secs

i2016-10-08 01:58:09,043:INFO:140142893401920:For stage PipelineStages.TRIP_SEGMENTATION, last_ts_processed = 2016-10-08T01:33:11.660000 
2016-10-08 01:58:08,851:DEBUG:140142893401920:------------------------------2016-10-07T18:33:01.102000-07:00------------------------------
2016-10-08 01:58:08
852:DEBUG:140142893401920:Setting new trip start point AttrDict({
 u'loc': {u'type': u'Point' u'coordinates': [-122.2691549 37.8719753]}
 'user_id': UUID('365fc61a-033c-49ec-8f47-6fc5fbc36151')
 u'ts': 1475890381.102
 u'fmt_time': u'2016-10-07T18:33:01.102000-07:00'
 u'local_dt_minute': 33

2016-10-08 01:58:08,858:DEBUG:140142893401920:------------------------------2016-10-07T18
:33:06-07:00------------------------------
2016-10-08 01:58:08,868:DEBUG:140142893401920:prev_point.ts = 1475890381.1, curr_point.ts = 1475890386.0, time gap = 4.89800000191 (vs 300), distance_gap = 4.1789205142 (vs 100), speed_gap = 0.853189161406 (vs 0.333333333333) continuing trip
2016-10-08 01:58:08,863:DEBUG:140142893401920:len(last10PointsDistances) = 2, len(last5MinsDistances) = 1
2016-10-08 01:58:08,863:DEBUG:140142893401920:last5MinsTimes.max() = 4.89800000191, time_threshold = 300
2016-10-08 01:58:08,868:DEBUG:140142893401920:Too few points to make a decision, continuing
2016-10-08 01:58:08,870:DEBUG:140142893401920:trip end transition, so last 10 points are RangeIndex(start=324, stop=326, step=1)
2016-10-08 01:58:08,872:DEBUG:140142893401920:Found trip end at 2016-10-07T18:33:01.102000-07:00
2016-10-08 01:58:08,884:DEBUG:140142893401920:segmentation_point_list has length 3

The check that appears to be triggered is

        if not just_ended and len(transition_df) > 0:
            stopped_moving_after_last = transition_df[(transition_df.ts > currPoint.ts) & (transition_df.transition == 2)]
            if len(stopped_moving_after_last) > 0:
                (unused, last_trip_end_point) = self.get_last_trip_end_point(filtered_points_df,
                                                                             last10Points_df, None)
                segmentation_points.append((curr_trip_start_point, last_trip_end_point))
                logging.debug("Found trip end at %s" % last_trip_end_point.fmt_time)
                # We have processed everything up to the trip end by marking it as a completed trip
                self.last_ts_processed = currPoint.metadata_write_ts

But we see that len(transition_df) == 0

2016-10-08 01:58:08,864:DEBUG:140142893401920:orig_ts_db_keys = ['statemachine/transition'], analysis_ts_db_keys = []
2016-10-08 01:58:08,866:DEBUG:140142893401920:In range 1475890381.1 -> 1475890386.0 found no transitions
shankari commented 8 years ago

It is because of

2016-10-11 20:36:16,152:DEBUG:140735236476928:Iterated over all points, just_ended = False, len(transition_df) = 380

Let us see why that if check was structured in that way.

shankari commented 8 years ago

Because of https://github.com/e-mission/e-mission-server/issues/352#issuecomment-240526292 Basically, we look to see if there are any transitions. But shouldn't we check to see if there is a transition after the current end?

shankari commented 8 years ago

Looking at the transitions, we see a single geofence exit and then multiple STOPPED transitions, some of which are clearly less than 5 mins apart. This is probably the mismatch issue, although it is not clear why calling STOPPED_MOVING does not turn off location tracking and create a geofence.

373  2016-10-07T18:16:30.760000-07:00           1
374  2016-10-07T18:18:50.127000-07:00           2
375  2016-10-07T18:21:55.374000-07:00           2
376  2016-10-07T18:26:38.847000-07:00           2
377  2016-10-07T18:27:36.861000-07:00           2
378  2016-10-07T18:28:57.186000-07:00           2
379  2016-10-07T18:33:06.826000-07:00           2
shankari commented 8 years ago

I'm going to see if this is the case for either my phone or one of the test phones. If not, I'm going to have to ask the person for their logs.

shankari commented 8 years ago

Spot checking through the logs, and ignoring any df that has transitions 13 and 14, we get:

2016-10-11 16:19:20,273:DEBUG:139839091201856:transition_df =                            fmt_time  transition
0  2016-10-11T16:20:32.888000+02:00           1
1  2016-10-11T16:53:47.884000+02:00           2
2016-10-11 17:22:18,031:DEBUG:139780715370304:transition_df =                            fmt_time  transition
0  2016-10-11T08:58:01.383000-07:00           1
1  2016-10-11T09:09:06.293000-07:00           2
2  2016-10-11T09:11:24.084000-07:00           1
3  2016-10-11T09:23:47.410000-07:00           2
4  2016-10-11T09:24:28.527000-07:00           1
5  2016-10-11T09:27:19.426000-07:00           2
2016-10-11 17:23:53,999:DEBUG:139780715370304:transition_df =                            fmt_time  transition
0  2016-10-11T09:23:28.708000-07:00           1
1  2016-10-11T09:24:21.279000-07:00           2
2  2016-10-11T09:25:23.202000-07:00           1
3  2016-10-11T09:26:18.472000-07:00           2
4  2016-10-11T09:27:32.182000-07:00           1
5  2016-10-11T09:28:27.221000-07:00           2
6  2016-10-11T09:29:41.238000-07:00           1
7  2016-10-11T09:35:34.699000-07:00           2

Don't see a lot of such behavior. Asking for logs/repo.

shankari commented 8 years ago

Spot checking through the logs, and ignoring any df that has transitions 13 and 14, we get:

2016-10-11 16:19:20,273:DEBUG:139839091201856:transition_df =                            fmt_time  transition
0  2016-10-11T16:20:32.888000+02:00           1
1  2016-10-11T16:53:47.884000+02:00           2
2016-10-11 17:22:18,031:DEBUG:139780715370304:transition_df =                            fmt_time  transition
0  2016-10-11T08:58:01.383000-07:00           1
1  2016-10-11T09:09:06.293000-07:00           2
2  2016-10-11T09:11:24.084000-07:00           1
3  2016-10-11T09:23:47.410000-07:00           2
4  2016-10-11T09:24:28.527000-07:00           1
5  2016-10-11T09:27:19.426000-07:00           2
2016-10-11 17:23:53,999:DEBUG:139780715370304:transition_df =                            fmt_time  transition
0  2016-10-11T09:23:28.708000-07:00           1
1  2016-10-11T09:24:21.279000-07:00           2
2  2016-10-11T09:25:23.202000-07:00           1
3  2016-10-11T09:26:18.472000-07:00           2
4  2016-10-11T09:27:32.182000-07:00           1
5  2016-10-11T09:28:27.221000-07:00           2
6  2016-10-11T09:29:41.238000-07:00           1
7  2016-10-11T09:35:34.699000-07:00           2
2016-10-11 17:27:29,085:DEBUG:139780715370304:transition_df =                            
fmt_time  transition
0  2016-10-11T09:28:37.943000-07:00           1
1  2016-10-11T09:42:56.879000-07:00           2
2016-10-11 17:29:22,875:DEBUG:139780715370304:transition_df =                            fmt_time  transition
0  2016-10-11T16:55:01.096000+02:00           1
1  2016-10-11T18:19:42.405000+02:00           2
2016-10-11 18:27:47,211:DEBUG:140283503507264:transition_df =                            fmt_time  transition
0  2016-10-11T09:17:07.073000-07:00           1
1  2016-10-11T10:09:02.505000-07:00           2
2  2016-10-11T10:19:49.515000-07:00           1
3  2016-10-11T10:47:46.691000-07:00           2
2016-10-11 19:23:07,306:DEBUG:140474316433216:transition_df =                            fmt_time  transition
0  2016-10-11T11:06:47.462000-07:00           1
1  2016-10-11T11:11:54.334000-07:00           2
2  2016-10-11T11:12:22.214000-07:00           1
3  2016-10-11T11:22:48.002000-07:00           2
4  2016-10-11T11:24:36.053000-07:00           1
5  2016-10-11T11:43:09.527000-07:00           2
6  2016-10-11T11:43:40.053000-07:00           1
7  2016-10-11T11:55:03.966000-07:00           2
8  2016-10-11T11:58:53.812000-07:00           1
9  2016-10-11T12:01:10.352000-07:00           2
2016-10-11 19:24:04,475:DEBUG:140474316433216:transition_df =                            fmt_time  transition
0  2016-10-11T10:47:46.691000-07:00           2
1  2016-10-11T10:59:50.512000-07:00           1
2  2016-10-11T11:31:33.337000-07:00           2
2016-10-11 19:25:24,193:DEBUG:140474316433216:transition_df =                            
 fmt_time  transition
0   2016-10-11T09:29:43.405000-07:00           1
1   2016-10-11T09:32:52.815000-07:00           2
2   2016-10-11T10:39:10.623000-07:00           1
3   2016-10-11T10:43:14.425000-07:00           2
4   2016-10-11T10:50:49.197000-07:00           1
5   2016-10-11T10:53:58.969000-07:00           2
6   2016-10-11T11:38:24.280000-07:00           1
7   2016-10-11T11:49:14.770000-07:00           2
8   2016-10-11T11:49:41.938000-07:00           1
9   2016-10-11T12:05:20.786000-07:00           2
10  2016-10-11T12:06:02.368000-07:00           1
11  2016-10-11T12:07:17.133000-07:00           2
12  2016-10-11T12:09:22.025000-07:00           1
13  2016-10-11T12:10:33.176000-07:00           2
2016-10-11 19:26:17,679:DEBUG:140474316433216:transition_df =                            fmt_time  transition
0  2016-10-11T10:11:28.701000-07:00           1
1  2016-10-11T10:27:20.536000-07:00           2
2  2016-10-11T11:41:39.071000-07:00           1
3  2016-10-11T11:50:35.783000-07:00           2
2016-10-11 21:23:01,655:DEBUG:140498152335168:transition_df =                            fmt_time  transition
0  2016-10-11T12:13:33.675000-07:00           1
1  2016-10-11T12:21:51.572000-07:00           2
2  2016-10-11T12:57:23.736000-07:00           1
3  2016-10-11T13:00:30.532000-07:00           2
4  2016-10-11T14:15:49.315000-07:00           1
5  2016-10-11T14:18:52.949000-07:00           2
2016-10-11 23:27:01,490:DEBUG:139721316005696:transition_df =                             fmt_time  transition
0   2016-10-11T14:03:18.156000-07:00           1
1   2016-10-11T14:07:21.908000-07:00           2
2   2016-10-11T14:07:46.806000-07:00           1
3   2016-10-11T14:11:49.008000-07:00           2
4   2016-10-11T14:12:08.574000-07:00           1
5   2016-10-11T14:17:35.369000-07:00           2
6   2016-10-11T14:36:33.483000-07:00           1
7   2016-10-11T14:43:02.052000-07:00           2
8   2016-10-11T14:43:15.398000-07:00           1
9   2016-10-11T14:52:59.833000-07:00           2
10  2016-10-11T15:05:02.485000-07:00           1
11  2016-10-11T15:16:18.888000-07:00           2
12  2016-10-11T15:16:39.414000-07:00           1
13  2016-10-11T15:20:39.087000-07:00           2
14  2016-10-11T15:21:03.554000-07:00           1
15  2016-10-11T15:28:23.638000-07:00           2

I'm going to implement the workaround and then ask the user for logs.